1
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ are three vectors such that $\overline{\mathrm{a}} \neq \overline{0}$ and $\overline{\mathrm{a}} \times \overline{\mathrm{b}}=2 \overline{\mathrm{a}} \times \overline{\mathrm{c}},|\overline{\mathrm{a}}|=|\overline{\mathrm{c}}|=1,|\overline{\mathrm{~b}}|=4$ and $|\overline{\mathrm{b}} \times \overline{\mathrm{c}}|=\sqrt{15}$. If $\overline{\mathrm{b}}-2 \overline{\mathrm{c}}=\lambda \overline{\mathrm{a}}$, then $\lambda$ is

A
1
B
$-$4
C
3
D
$-$2
2
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Two friends A and B apply for a job in the same company. The probabilities of A getting selected is $\frac{2}{5}$ and that of B is $\frac{4}{7}$. Then the probability, that one of them is selected, is

A
$\frac{8}{35}$
B
$\frac{18}{35}$
C
$\frac{26}{35}$
D
$\frac{34}{35}$
3
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $P_1$ and $P_2$ are perpendicular distances (in units) from point $(2,-1)$ to the pair of lines $2 x^2-5 x y+2 y^2=0$, then the value of $\mathrm{P}_1 \mathrm{P}_2$ is

A
,2
B
5
C
10
D
4
4
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \frac{x^3-7 x+6}{x^2+3 x} \mathrm{~d} x=$$

A
$\frac{x^2}{2}+3 x-\log x+\mathrm{c}$, where c is a constant of integration.
B
$\frac{x^2}{2}+3 x+2 \log x+\mathrm{c}$, where c is a constant of integration.
C
$\frac{x^2}{2}-3 x+2 \log x+\mathrm{c}$, where c is a constant of integration.
D
$\frac{x^2}{2}-3 x-\log x+\mathrm{c}$, where c is a constant of integration.
MHT CET Papers
EXAM MAP