1
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the function $f$ defined on $\left(\frac{\pi}{6}, \frac{\pi}{3}\right)$ by

$$f(x)=\left\{\begin{array}{cc} \frac{\sqrt{2} \cos x-1}{\cot x-1}, & x \neq \frac{\pi}{4} \\ k \quad, & x=\frac{\pi}{4} \end{array}\right.$$

is continuous, then k is equal to

A
$\frac{1}{2}$
B
$2$
C
$1$
D
$\frac{1}{\sqrt{2}}$
2
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \cos ^{\frac{-3}{7}} x \cdot \sin ^{\frac{-11}{7}} x d x=$$

A
$\frac{-4}{7} \tan ^{\frac{-4}{7}} x+c$, where $c$ is a constant of integration.
B
$\frac{4}{7} \tan ^{\frac{4}{7}} x+c$, where c is a constant of integration.
C
$\frac{-7}{4} \tan ^{\frac{-4}{7}} x+c$, where c is a constant of integration.
D
$\frac{7}{4} \tan ^{\frac{4}{7}} x+c$, where c is a constant of integration.
3
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\bar{a}=a_1 \hat{i}+a_2 \hat{j}+a_3 \hat{k}, \quad \bar{b}=b_1 \hat{i}+b_2 \hat{j}+b_3 \hat{k}$, $\bar{c}=c_1 \hat{i}+c_2 \hat{j}+c_3 \hat{k}$ and $\left[\begin{array}{lll}3 \bar{a}+\bar{b} & 3 \bar{b}+\bar{c} & 3 \bar{c}+\bar{a}\end{array}\right]=\lambda\left|\begin{array}{lll}\overline{\mathrm{a}} \cdot \hat{\mathrm{i}} & \overline{\mathrm{a}} \cdot \hat{\mathrm{j}} & \overline{\mathrm{a}} \cdot \hat{\mathrm{k}} \\ \overline{\mathrm{b}} \cdot \hat{\mathrm{i}} & \overline{\mathrm{b}} \cdot \hat{\mathrm{j}} & \overline{\mathrm{b}} \cdot \hat{\mathrm{k}} \\ \overline{\mathrm{c}} \cdot \hat{\mathrm{i}} & \overline{\mathrm{c}} \cdot \hat{\mathrm{j}} & \overline{\mathrm{c}} \cdot \hat{\mathrm{k}}\end{array}\right|,$ then the value of $\lambda$ is

A
27
B
28
C
4
D
3
4
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The domain of the function $\mathrm{f}(x)=\frac{\sin ^{-1}(x-3)}{\sqrt{9-x^2}}$ is

A
$(2,3)$
B
$[2,3)$
C
$[2,3]$
D
$(2,3]$
MHT CET Papers
EXAM MAP