1
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=\frac{a \sin x+b \cos x}{c \sin x+d \cos x}$ is decreasing for all $x$ then

A
$\mathrm{ad}-\mathrm{bc}>0$
B
$ad - bc <0$
C
$a b-c d>0$
D
$\mathrm{ab }-\mathrm{cd}<0$
2
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If a discrete random variable X is defined as follows

$\mathrm{P}[\mathrm{X}=x]=\left\{\begin{array}{cl}\frac{\mathrm{k}(x+1)}{5^x}, & \text { if } x=0,1,2 \ldots \ldots . \\ 0, & \text { otherwise }\end{array}\right.$

then $\mathrm{k}=$

A
$\frac{19}{25}$
B
$\frac{18}{25}$
C
$\frac{16}{25}$
D
$\frac{7}{25}$
3
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\bar{a}=2 \hat{i}-\hat{j}+\hat{k}, \bar{b}=\hat{i}+\hat{j}-2 \hat{k}$ and $\bar{c}=4 \hat{i}-2 \hat{j}+\hat{k}$, then the unit vector in the direction of $3 \overline{\mathrm{a}}+\overline{\mathrm{b}}-2 \overline{\mathrm{c}}$ is

A
$\frac{1}{\sqrt{6}}(-\hat{i}+2 \hat{j}-\hat{k})$
B
$\frac{1}{\sqrt{6}}(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}})$
C
$\frac{1}{\sqrt{6}}(2 \hat{i}-\hat{j}-\hat{k})$
D
$\frac{1}{\sqrt{6}}(-\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+\hat{\mathrm{k}})$
4
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Numbers are selected at random, one at a time from two digit numbers $10,11,12 \ldots ., 99$ with replacement. An event $E$ occurs if and only if the product of the two digits of a selected number is 18 . If four numbers are selected, then probability that the event E occurs at least 3 times is

A
$\frac{87}{90^4}$
B
$\frac{348}{90^4}$
C
$87\left(\frac{4}{90}\right)^4$
D
$\left(\frac{4}{10}\right)^4$
MHT CET Papers
EXAM MAP