1
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $z_1=5-2 i$ and $z_2=3+i$, where $i=\sqrt{-1}$, then $\arg \left(\frac{z_1+z_2}{z_1-z_2}\right)$ is

A
$\tan ^{-1}\left(\frac{22}{19}\right)$
B
$\tan ^{-1}\left(\frac{22}{13}\right)$
C
$\tan ^{-1}\left(\frac{21}{19}\right)$
D
$\tan ^{-1}\left(\frac{19}{22}\right)$
2
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The co-ordinates of the foot of the perpendicular from the point $(0,2,3)$ on the line $\frac{x+3}{5}=\frac{y+1}{2}=\frac{z+4}{3}$ is

A
$\left(\frac{48}{19}, \frac{23}{19}, \frac{-13}{19}\right)$
B
$\left(\frac{-48}{19}, \frac{23}{19}, \frac{-13}{19}\right)$
C
$\left(\frac{-48}{19}, \frac{-23}{19}, \frac{-13}{19}\right)$
D
$\left(\frac{48}{19}, \frac{-23}{19}, \frac{-13}{19}\right)$
3
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The slope of tangent at $(x, y)$ to a curve passing through $\left(1, \frac{\pi}{4}\right)$ is $\frac{y}{x}-\cos ^2 \frac{y}{x}$, then the equation of curve is

A
$y=\tan ^{-1}\left(\log \left(\frac{\mathrm{e}}{x}\right)\right)$
B
$y=x^2\left(\tan ^{-1}\left(\log \frac{\mathrm{e}}{x}\right)\right)$
C
$y=x\left(\tan ^{-1}\left(\log \frac{\mathrm{e}}{x}\right)\right)$
D
$y=\frac{1}{x}\left(\tan ^{-1}\left(\log \frac{\mathrm{e}}{x}\right)\right)$
4
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\cos ^{-1}\left(\frac{12}{13}\right)+\sin ^{-1}\left(\frac{3}{5}\right)=\sin ^{-1} \mathrm{P}$, then the value of $P$ is

A
$\frac{63}{65}$
B
$\frac{56}{65}$
C
$\frac{48}{65}$
D
$\frac{36}{65}$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12