1
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\lim _\limits{y \rightarrow 0} \frac{\sqrt{1+\sqrt{1+y^4}}-\sqrt{2}}{y^4}=$$

A
 $0$
B
$\frac{1}{2 \sqrt{2}}$
C
$\frac{1}{4 \sqrt{2}}$
D
$\frac{1}{2 \sqrt{2}(\sqrt{2}+1)}$
2
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\overline{\mathrm{a}}$ is perpendicular to $\bar{b}$ and $\bar{c},|\bar{a}|=2$, $|\overline{\mathrm{b}}|=3,|\overline{\mathrm{c}}|=4$ and the angle between $\overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ is $\frac{\pi}{3}$, then $\left[\begin{array}{lll}\overline{\mathrm{a}} & \overline{\mathrm{b}} & \overline{\mathrm{c}}\end{array}\right]=$

A
$4 \sqrt{3}$
B
$6 \sqrt{3}$
C
$24 \sqrt{3}$
D
$12 \sqrt{3}$
3
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The mean and variance of seven observations are 8 and 16 respectively. If five of the observations are $2,4,10,12,14$, then the product of remaining two observations is

A
45
B
44
C
48
D
40
4
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $y=\tan ^{-1}\left(\frac{2+3 x}{3-2 x}\right)+\tan ^{-1}\left(\frac{4 x}{1+5 x^2}\right)$, then $\frac{d y}{d x}=$

A
$\frac{1}{1+25 x^2}$
B
$\frac{5}{1+25 x^2}$
C
$\frac{1}{1+5 x^2}$
D
$\frac{5}{1+5 x^2}$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12