1
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\lim _\limits{y \rightarrow 0} \frac{\sqrt{1+\sqrt{1+y^4}}-\sqrt{2}}{y^4}=$$

A
 $0$
B
$\frac{1}{2 \sqrt{2}}$
C
$\frac{1}{4 \sqrt{2}}$
D
$\frac{1}{2 \sqrt{2}(\sqrt{2}+1)}$
2
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\overline{\mathrm{a}}$ is perpendicular to $\bar{b}$ and $\bar{c},|\bar{a}|=2$, $|\overline{\mathrm{b}}|=3,|\overline{\mathrm{c}}|=4$ and the angle between $\overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ is $\frac{\pi}{3}$, then $\left[\begin{array}{lll}\overline{\mathrm{a}} & \overline{\mathrm{b}} & \overline{\mathrm{c}}\end{array}\right]=$

A
$4 \sqrt{3}$
B
$6 \sqrt{3}$
C
$24 \sqrt{3}$
D
$12 \sqrt{3}$
3
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The mean and variance of seven observations are 8 and 16 respectively. If five of the observations are $2,4,10,12,14$, then the product of remaining two observations is

A
45
B
44
C
48
D
40
4
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $y=\tan ^{-1}\left(\frac{2+3 x}{3-2 x}\right)+\tan ^{-1}\left(\frac{4 x}{1+5 x^2}\right)$, then $\frac{d y}{d x}=$

A
$\frac{1}{1+25 x^2}$
B
$\frac{5}{1+25 x^2}$
C
$\frac{1}{1+5 x^2}$
D
$\frac{5}{1+5 x^2}$
MHT CET Papers
EXAM MAP