1
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

A line having direction ratios $1,-4,2$ intersects the lines $\frac{x-7}{3}=\frac{y-1}{-1}=\frac{z+2}{1}$ and $\frac{x}{2}=\frac{y-7}{3}=\frac{z}{1}$ at the points $A$ and $B$ resp., then co-ordinates of points A and B are

A
$\mathrm{A}(-8,6,-7)\qquad$ $\mathrm{B}(-6,-2,-3)$
B
$\mathrm{A}(8,6,7)\qquad$ $\mathrm{B(6,2,3)}$
C
$\mathrm{A}(8,6,7)\qquad$ $\mathrm{B}(6,-2,-3)$
D
$\mathrm{A}(7,6,8)\qquad$ $\mathrm{B}(-3,-2,6)$
2
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$\int \frac{x^2-4}{x^4+9 x^2+16} \mathrm{dx}=\tan ^{-1}(\mathrm{f}(x))+\mathrm{c}$ (where c is a constant of integration), then value of $f(2)$ is

A
1
B
2
C
3
D
4
3
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\overline{\mathrm{a}}=\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}$ and $\overline{\mathrm{b}}=2 \hat{i}+3 \hat{\mathrm{j}}-\hat{\mathrm{k}}$ are two vectors, then the angle between the vectors $3 \overline{\mathrm{a}}+5 \overline{\mathrm{~b}}$ and $5 \overline{\mathrm{a}}+3 \overline{\mathrm{~b}}$ is

A
$\cos ^{-1}\left(\frac{10}{19}\right)$
B
$\cos ^{-1}\left(\frac{11}{19}\right)$
C
$\cos ^{-1}\left(\frac{13}{19}\right)$
D
$\cos ^{-1}\left(\frac{14}{19}\right)$
4
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $A=\left[\begin{array}{cc}1 & 2 \\ -1 & 4\end{array}\right]$ and $A^{-1}=\alpha \mathrm{I}+\beta \mathrm{A}, \alpha, \beta \in \mathbb{R}$, I is the identity matrix of order 2 , then $4(\alpha-\beta)$ is

A
$\frac{8}{3}$
B
4
C
2
D
5
MHT CET Papers
EXAM MAP