1
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The slope of tangent at $(x, y)$ to a curve passing through $\left(1, \frac{\pi}{4}\right)$ is $\frac{y}{x}-\cos ^2 \frac{y}{x}$, then the equation of curve is

A
$y=\tan ^{-1}\left(\log \left(\frac{\mathrm{e}}{x}\right)\right)$
B
$y=x^2\left(\tan ^{-1}\left(\log \frac{\mathrm{e}}{x}\right)\right)$
C
$y=x\left(\tan ^{-1}\left(\log \frac{\mathrm{e}}{x}\right)\right)$
D
$y=\frac{1}{x}\left(\tan ^{-1}\left(\log \frac{\mathrm{e}}{x}\right)\right)$
2
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\cos ^{-1}\left(\frac{12}{13}\right)+\sin ^{-1}\left(\frac{3}{5}\right)=\sin ^{-1} \mathrm{P}$, then the value of $P$ is

A
$\frac{63}{65}$
B
$\frac{56}{65}$
C
$\frac{48}{65}$
D
$\frac{36}{65}$
3
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The rate of change of the volume of a sphere with respect to its surface area, when its radius is 2 cm , is _________ $\mathrm{cm}^3 / \mathrm{cm}^2$.

A
0.1
B
0.5
C
1
D
2
4
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

In a triangle $\mathrm{ABC}, l(\mathrm{AB})=\sqrt{23}$ units, $l(\mathrm{BC})=3$ units, $l(\mathrm{CA})=4$ units, then $\frac{\cot A+\cot C}{\cot B}$ is

A
1
B
2
C
4
D
8
MHT CET Papers
EXAM MAP