1
GATE ME 2016 Set 2
MCQ (Single Correct Answer)
+2
-0.6
The value of $$\oint\limits_\Gamma {{{3z - 5} \over {\left( {z - 1} \right)\left( {z - 2} \right)}}dz} $$ along a closed path $$\Gamma $$ is equal to $$\left( {4\pi i} \right),$$ where $$z=x+iy$$ and $$i = \sqrt { - 1} .$$ The correct path $$\Gamma $$ is
A
GATE ME 2016 Set 2 Engineering Mathematics - Complex Variable Question 8 English Option 1
B
GATE ME 2016 Set 2 Engineering Mathematics - Complex Variable Question 8 English Option 2
C
GATE ME 2016 Set 2 Engineering Mathematics - Complex Variable Question 8 English Option 3
D
GATE ME 2016 Set 2 Engineering Mathematics - Complex Variable Question 8 English Option 4
2
GATE ME 2016 Set 2
Numerical
+2
-0
A function $$f$$ of the complex variable $$z=x+iy,$$ is given as $$f(x,y)=u(x,y)+iv(x,y),$$
Where $$u(x,y)=2kxy$$ and $$v(x,y)$$ $$ = {x^2} - {y^2}.$$
The value of $$k,$$ for which the function is analytic, is __________.
Your input ____
3
GATE ME 2016 Set 2
MCQ (Single Correct Answer)
+1
-0.3
A point mass having mass $$M$$ is moving with a velocity $$V$$ at an angle $$\mathop \theta \limits^ \cdot $$ to the wall as shown in the figure. The mass undergoes a perfectly elastic collision with the smooth wall and rebounds. The total change (final minus initial) in the momentum of the mass is GATE ME 2016 Set 2 Engineering Mechanics - Engineering Mechanics Static and Dynamics Question 54 English
A
$$ - 2MV\cos \theta \widehat j$$
B
$$ 2MV\sin \theta \widehat j$$
C
$$ 2MV\cos \theta \widehat j$$
D
$$ - 2MV\sin \theta \widehat j$$
4
GATE ME 2016 Set 2
MCQ (Single Correct Answer)
+2
-0.6
A system of particles in motion has mass center $$G$$ as shown in the figure. The particle $$i$$ has mass $${m_i}$$ and its position with respect to a fixed point $$O$$ is given by the position vector $${r_i}$$ . The position of the particle with respect to $$G$$ is given by the vector $${\rho _i}$$ . The time rate of change of the angular momentum of the system of particles about $$G$$ is (The quantity $$\mathop {{\rho _i}}\limits^{..} $$ indicates second derivative of $${\rho _i}$$ with respect to time and likewise for $${r _i}$$). GATE ME 2016 Set 2 Engineering Mechanics - Engineering Mechanics Static and Dynamics Question 9 English
A
$$\,\,{\sum {_i{r_i} \times {m_i}\mathop \rho \limits^{..} } _i}$$
B
$${\sum {_i{\rho _i} \times {m_i}\mathop r\limits^{..} } _i}$$
C
$${\sum {_i{r_i} \times {m_i}\mathop r\limits^{..} } _i}$$
D
$${\sum {_i{\rho _i} \times {m_i}\mathop \rho \limits^{..} } _i}$$
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12