1
GATE ME 2005
MCQ (Single Correct Answer)
+2
-0.6
A small copper ball of $$5$$ $$mm$$ diameter at $$500$$ $$K$$ is dropped into an oil bath whose temperature is $$300$$ $$K.$$ the thermal conductivity of copper is $$400$$ $$W/m.$$ $$K,$$ its density $$9000\,\,kg/{m^3}$$ and its specific heat $$385\,J/kg.\,\,K.$$ if the heat transfer coefficient is $$250\,\,W/{m^2}K$$ and lumped analysis is assumed to be valid, the rate of fall of the temperature of the ball at the beginning of cooling will be, in $$K/s.$$
A
$$8.7$$
B
$$13.9$$
C
$$17.3$$
D
$$27.7$$
2
GATE ME 2005
MCQ (Single Correct Answer)
+2
-0.6
An un-insulated air conditioning duct of rectangular cross section $$1\,\,m \times 0.5\,m,$$ carrying air at $${20^ \circ }C$$ with a velocity of $$10 m/s,$$ is exposed to an ambient of $${30^ \circ }C$$. Neglect the effect of duct construction material. For air in the range of $${20-30^ \circ }C,$$ data are as follows: thermal conductivity $$=0.025 W/m.K;$$ viscosity $$ = 18\mu Pa.s;$$ Prandtl number $$=0.73;$$ density $$= 1.2$$ $$kg/{m^3}.$$. The laminar flow Nusselt number is $$3.4$$ for constant wall temperature conditions and, for turbulent flow, $$Nu = 0.023\,\,R{e^{0.8}}\,{\Pr ^{0.33}}.$$

The Reynolds number for the flow is

A
$$444$$
B
$$890$$
C
$$4.44 \times {10^5}$$
D
$$5.33 \times {10^5}$$
3
GATE ME 2005
MCQ (Single Correct Answer)
+2
-0.6
An un-insulated air conditioning duct of rectangular cross section $$1\,\,m \times 0.5\,m,$$ carrying air at $${20^ \circ }C$$ with a velocity of $$10 m/s,$$ is exposed to an ambient of $${30^ \circ }C$$. Neglect the effect of duct construction material. For air in the range of $${20-30^ \circ }C,$$ data are as follows: thermal conductivity $$=0.025 W/m.K;$$ viscosity $$ = 18\mu Pa.s;$$ Prandtl number $$=0.73;$$ density $$= 1.2$$ $$kg/{m^3}.$$. The laminar flow Nusselt number is $$3.4$$ for constant wall temperature conditions and, for turbulent flow, $$Nu = 0.023\,\,R{e^{0.8}}\,{\Pr ^{0.33}}.$$

The heat transfer per meter length of the duct, in watts, is

A
$$3.8$$
B
$$5.3$$
C
$$89$$
D
$$769$$
4
GATE ME 2005
MCQ (Single Correct Answer)
+1
-0.3
The following figure was generated from experimental data relating spectral black body emissive power to wave length at three temperatures $${T_1},{T_2}$$ and $${T_3}\left( {{T_1} > {T_2} > {T_3}} \right).$$ GATE ME 2005 Heat Transfer - Radiation Question 25 English

The conclusion is that the measurements are

A
correct because the maximum in $${E_{b\lambda }}$$ show the correct trend
B
correct because Planck's law is satisfied
C
wrong because the Stephen Boltzmannn law is not satisfied
D
wrong because Wien's displacement law is not satisfied
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12