1
GATE EE 2025
MCQ (Single Correct Answer)
+2
-0.67

Let $X$ and $Y$ be continuous random variables with probability density functions $P_X(x)$ and $P_Y(y)$, respectively. Further, let $Y=X^2$ and $P_X(x)=\left\{\begin{array}{cc}1, & x \in(0,1] \\ 0, & \text { otherwise }\end{array}\right.$.

Which one of the following options is correct?

A
$P_Y(y)=\left\{\begin{array}{cc}\frac{1}{2 \sqrt{y}}, & y \in(0,1] \\ 0, & \text { otherwise }\end{array}\right.$
B
$P_Y(y)=\left\{\begin{array}{lc}1, & y \in(0,1] \\ 0, & \text { otherwise }\end{array}\right.$
C
$P_Y(y)=\left\{\begin{array}{cc}1.5 \sqrt{y}, & y \in(0,1] \\ 0, & \text { otherwise }\end{array}\right.$
D
$P_Y(y)=\left\{\begin{array}{cc}2 y, & y \in(0,1] \\ 0, & \text { otherwise }\end{array}\right.$
2
GATE EE 2025
MCQ (More than One Correct Answer)
+2
-0

Let $a_R$ be the unit radial vector in the spherical co-ordinate system. For which of the following value(s) of $n$, the divergence of the radial vector field $f(R)=a_R \frac{1}{R^n}$ is independent of $R$ ?

A
-2
B
-1
C
1
D
2
3
GATE EE 2025
Numerical
+2
-0
Let $(x, y) \in \Re^2$. The rate of change of the real valued function, $V(x, y)=x^2+x+y^2+1$ at the origin in the direction of the point $(1,2)$ is _________ (round off to the nearest integer)
Your input ____
4
GATE EE 2025
Numerical
+2
-0
Consider ordinary differential equations given by $\dot{x}_1(t)=2 x_2(t), \dot{x}_2(t)=r(t)$ with initial conditions $x_1(0)=1$ and $x_2(0)=0$. If $r(t)=\left\{\begin{array}{ll}1, & t \geq 0 \\ 0, & t<0\end{array}\right.$, then $t=1, x_1(t)=$ _____________ (Round off to the nearest integer).
Your input ____
EXAM MAP