1
GATE EE 2025
MCQ (Single Correct Answer)
+1
-0.33

Consider a discrete-time linear time-invariant (LTI) system, $\boldsymbol{S}$, where

$$ y[n]=S\{x(\mathrm{n})\} $$

$$Let\,\,\,\, S\{\delta[n]\}=\left\{\begin{array}{lc} 1, & n \in\{0,1,2\} \\ 0, & \text { otherwise } \end{array}\right. $$

where $\delta[n]$ is the discrete-time unit impulse function. For an input signal $x[n]$, the output $y[n]$ is

A
$x[n]+x[n-1]+x[n-2]$
B
$x[n-1]+x[n]+x[n+1]$
C
$x[n]+x[n+1]+x[n+2]$
D
$x[n+1]+x[n+2]+x[n+3]$
2
GATE EE 2025
MCQ (Single Correct Answer)
+1
-0.33

Consider a continuous-time signal

$$ x(t)=-t^2\{u(t+4)-u(t-4)\} $$

where $u(t)$ is the continuous-time unit step function. Let $\delta(t)$ be the continuous-time unit impulse function. The value of

$$ \int_{-\infty}^{\infty} x(t) \delta(t+3) d t $$

is

A
-9
B
9
C
3
D
-3
3
GATE EE 2025
Numerical
+1
-0

A continuous time periodic signal $x(t)$ is

$$ x(t)=1+2 \cos 2 \pi t+2 \cos 4 \pi t+2 \cos 6 \pi t $$

If $T$ is the period of $x(t)$, then $\frac{1}{T} \int_0^T|x(t)|^2 d t=$________(round off to the nearest integer).

Your input ____
4
GATE EE 2025
MCQ (Single Correct Answer)
+2
-0.67

Let continuous-time signals $x_1(t)$ and $x_2(t)$ be

$x_1(t)=\left\{\begin{array}{cc}1, & t \in[0,1] \\ 2-t, & t \in[1,2] \\ 0, & \text { otherwise }\end{array}\right.$

and $x_2(t)=\left\{\begin{array}{cc}t, & t \in[0,1] \\ 2-t, & t \in[1,2] \\ 0, & \text { otherwise }\end{array}\right.$.

Consider the convolution

$y(t)=x_1(t) * x_2(t)$. Then $\int\limits_{-\infty}^{\infty} y(t) d t$ is :

A
1.5
B
2.5
C
3.5
D
4
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12