1
TG EAPCET 2024 (Online) 11th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
$y=2 x^{3}-8 x^{2}+10 x-4$ is a function defined on [1,2]. If the tangent drawn at a point $(a, b)$ on the graph of this function is parallel to X-axis $a \in(1,2)$, then $a=$
A
0
B
5
C
1
D
$\frac{5}{3}$
2
TG EAPCET 2024 (Online) 11th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $m$ and $M$ are respectively the absolute minimum and absolute maximum values of a function $f(x)=2 x^{3}+9 x^{2}+12 x+1$ defined on $[-3,0]$, then $m+M=$
A
-7
B
0
C
1
D
5
3
TG EAPCET 2024 (Online) 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
The maximum interval in which the slopes of the tangents drawn to the curve $y=x^{4}+5 x^{3}+9 x^{2}+6 x+2$ increase is
A
$\left[\frac{-3}{2},-1\right]$
B
$\left[1, \frac{3}{2}\right]$
C
$R-\left[1, \frac{3}{2}\right]$
D
$R-\left[\frac{-3}{2},-1\right]$
4
TG EAPCET 2024 (Online) 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $A=\{P(\alpha, \beta) /$ the tangent drawn at $P$ to the curve $y^{3}-3 x y+2=0$ is horizontal line $\}$ and $B=\{Q(a, b) /$ the tangent drawn at $Q$ to the curve $y^{3}-3 x y+2=0$ is a vertical line $\}$, then $n(A)+n(B)=$
A
12
B
1
C
0
D
4
TS EAMCET Subjects
EXAM MAP