1
TG EAPCET 2024 (Online) 9th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
The number of normals that can be drawn through the point $(9,6)$ to the parabola $y^2=4 x$ is
A
0
B
1
C
2
D
3
2
TG EAPCET 2024 (Online) 9th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $(2,3)$ is the focus and $x-y+3=0$ is the directrix of a parabola, then the equation of the tangent drawn at the vertex of the parabola is
A
$x-y-2=0$
B
$x-y+2=0$
C
$x-y+5=0$
D
$x-y-5=0$
3
TG EAPCET 2024 (Online) 9th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
The equation of the common tangent to the parabola $y^2=8 x$ and the circle $x^2+y^2=2$ is $a x+b y+2=0$. If $-\frac{a}{b}>0$, then $3 a^2+2 b+1=$
A
5
B
4
C
3
D
2
4
TG EAPCET 2024 (Online) 9th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

    Consider the parabola $25\left[(x-2)^2+(y+5)^2\right]=(3 x+4 y-1)^2$, match the characteristic of this parabola given in List I with its corresponding item in List II.

    $$ \begin{array}{lll} \hline & \text { List I } & \text { List II } \\\\ \hline \text { I } & \text { Vertex } & \text { (A) } 8 \\\\ \hline \text { II } & \text { length of latus rectum } & \text { (B) }\left(\frac{29}{10}, \frac{-38}{10}\right) \\\\ \hline \text { III } & \text { Directrix } & \text { (C) } 3 x+4 y-1=0 \\\\ \hline \text { IV } & \begin{array}{l} \text { One end of the latus } \\\\ \text { rectum } \end{array} & \text { (D) }\left(\frac{-2}{5}, \frac{-16}{5}\right) \\\\ \hline \end{array} $$

    The correct answer is

A
I-B, II-E, III-C, IV-D
B
I-D, II-A, III-C, IV-B
C
I-B, II-A, III-C, IV-D
D
I-D, II-B, III-C, IV-A
TS EAMCET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12