1
TG EAPCET 2024 (Online) 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
The equation of the circle passing through the origin and cutting the circles $x^{2}+y^{2}+6 x-15=0$ and $x^{2}+y^{2}-8 y-10=0$ orthogonally is
A
$2 x^{2}+2 y^{2}-5 x+10 y=0$
B
$x^{2}+y^{2}-2 x+5 y=0$
C
$2 x^{2}+2 y^{2}-10 x+5 y=0$
D
$x^{2}+y^{2}-5 x+2 y=0$
2
TG EAPCET 2024 (Online) 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
$(1, k)$ is a point on the circle passing through the points $(-1,1),(0,-1)$ and $(1,0)$. If $k \neq 0$, then $k=$
A
$\frac{1}{2}$
B
$\frac{1}{3}$
C
$-\frac{1}{3}$
D
$-\frac{1}{2}$
3
TG EAPCET 2024 (Online) 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If the tangents $x+y+k=0$ and $x+a y+b=0$ drawn to the circle $S=x^2+y^2+2 x-2 y+1=0$ are perpendicular to each other and $k, b$ are both greater than 1 , then $b-k=$
A
$\sqrt{2}$
B
0
C
2
D
$2 \sqrt{2}$
4
TG EAPCET 2024 (Online) 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $(h, k)$ is the internal centre of similitude of the circles $x^2+y^2+2 x-6 y+1=0$ and $x^2+y^2-4 x+2 y+4=0$, then $4 h=$
A
0
B
3
C
1
D
5
TS EAMCET Subjects
EXAM MAP