1
TG EAPCET 2024 (Online) 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
The equation of a circle which passes through the points of intersection of the circles $2 x^{2}+2 y^{2}-2 x+6 y-3=0, x^{2}+y^{2}+4 x+2 y+1=0$ and whose centre lies on the common chord of these circles is
A
$2 x^{2}+2 y^{2}-3 x+4 y-2=0$
B
$x^{2}+y^{2}+2 x+5 y-2=0$
C
$3 x^{2}+3 y^{2}-2 x+4 y-3=0$
D
$4 x^{2}+4 y^{2}+6 x+10 y-1=0$
2
TG EAPCET 2024 (Online) 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If the equation of the circle which cuts each of the circles $x^{2}+y^{2}=4, x^{2}+y^{2}-6 x-8 y+10=0$ and $x^{2}+y^{2}+2 x-4 y-2=0$ at the extremities of a diameter of these circles is $x^{2}+y^{2}+2 g x+2 f y+c=0$, then $g+f+c=$
A
9
B
-9
C
12
D
-12
3
TG EAPCET 2024 (Online) 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
The equation of the circle passing through the origin and cutting the circles $x^{2}+y^{2}+6 x-15=0$ and $x^{2}+y^{2}-8 y-10=0$ orthogonally is
A
$2 x^{2}+2 y^{2}-5 x+10 y=0$
B
$x^{2}+y^{2}-2 x+5 y=0$
C
$2 x^{2}+2 y^{2}-10 x+5 y=0$
D
$x^{2}+y^{2}-5 x+2 y=0$
4
TG EAPCET 2024 (Online) 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
$(1, k)$ is a point on the circle passing through the points $(-1,1),(0,-1)$ and $(1,0)$. If $k \neq 0$, then $k=$
A
$\frac{1}{2}$
B
$\frac{1}{3}$
C
$-\frac{1}{3}$
D
$-\frac{1}{2}$
TS EAMCET Subjects
EXAM MAP