1
WB JEE 2021
MCQ (Single Correct Answer)
+2
-0.5
Change Language
The determinant $$\left| {\matrix{ {{a^2} + 10} & {ab} & {ac} \cr {ab} & {{b^2} + 10} & {bc} \cr {ac} & {bc} & {{c^2} + 10} \cr } } \right|$$ is
A
divisible by 10 but not by 100
B
divisible by 100
C
not divisible by 100
D
not divisible by 10
2
WB JEE 2020
MCQ (Single Correct Answer)
+1
-0.25
Change Language
Let A = $$\left( {\matrix{ {3 - t} \cr { - 1} \cr 0 \cr } \matrix{ {} \cr {} \cr {} \cr } \,\matrix{ 1 \cr {3 - t} \cr { - 1} \cr } \matrix{ {} \cr {} \cr {} \cr } \matrix{ 0 \cr 1 \cr 0 \cr } } \right)$$ and det A = 5, then
A
t = 1
B
t = 2
C
t = $$ - $$ 1
D
t = $$ - $$ 2
3
WB JEE 2020
MCQ (Single Correct Answer)
+1
-0.25
Change Language
Let $$A = \left[ {\matrix{ {12} & {24} & 5 \cr x & 6 & 2 \cr { - 1} & { - 2} & 3 \cr } } \right]$$. The value of x for which the matrix A is not invertible is
A
6
B
12
C
3
D
2
4
WB JEE 2020
MCQ (Single Correct Answer)
+1
-0.25
Change Language
Let $$A = \left( {\matrix{ a & b \cr c & d \cr } } \right)$$ be a 2 $$ \times $$ 2 real matrix with det A = 1. If the equation det (A $$ - $$ $$\lambda $$I2) = 0 has imaginary roots (I2 be the identity matrix of order 2), then
A
(a + d)2 < 4
B
(a + d)2 = 4
C
(a + d)2 > 4
D
(a + d)2 = 16
WB JEE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12