1
WB JEE 2025
MCQ (Single Correct Answer)
+1
-0.25
Change Language

If the matrix $\left(\begin{array}{ccc}0 & a & a \\ 2 b & b & -b \\ c & -c & c\end{array}\right)$ is orthogonal, then the values of $a, b, c$ are

A
$a= \pm \frac{1}{\sqrt{3}}, b= \pm \frac{1}{\sqrt{6}}, c= \pm \frac{1}{\sqrt{2}}$
B
$a= \pm \frac{1}{\sqrt{2}}, b= \pm \frac{1}{\sqrt{6}}, c= \pm \frac{1}{\sqrt{3}}$
C
$a=-\frac{1}{\sqrt{2}}, b=-\frac{1}{\sqrt{6}}, c=-\frac{1}{\sqrt{3}}$
D
$a=\frac{1}{\sqrt{3}}, b=\frac{1}{\sqrt{6}}, c=\frac{1}{\sqrt{3}}$
2
WB JEE 2025
MCQ (Single Correct Answer)
+1
-0.25
Change Language

Let $A=\left[\begin{array}{ccc}5 & 5 \alpha & \alpha \\ 0 & \alpha & 5 \alpha \\ 0 & 0 & 5\end{array}\right]$. If $|A|^2=25$, then $|\alpha|$ equals to

A
5$^2$
B
1
C
$\frac{1}{5}$
D
5
3
WB JEE 2025
MCQ (Single Correct Answer)
+1
-0.25
Change Language

An $n \times n$ matrix is formed using 0, 1 and $-$1 as its elements. The number of such matrices which are skew symmetric is

A
$\frac{n(n-1)}{2}$
B
$(n-1)^2$
C
$2^{n(n-1) / 2}$
D
$3^{n(n-1) / 2}$
4
WB JEE 2025
MCQ (Single Correct Answer)
+1
-0.25
Change Language

Suppose $\alpha, \beta, \gamma$ are the roots of the equation $x^3+q x+r=0($ with $r \neq 0)$ and they are in A.P. Then the rank of the matrix $\left(\begin{array}{lll}\alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta\end{array}\right)$ is

A
3
B
2
C
0
D
1
WB JEE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12