1
TG EAPCET 2024 (Online) 11th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
The axis of a parabola is parallel to $Y$-axis. If this parabola passes through the points $(1,0),(0,2),(-1,-1)$ and its equation is $a x^{2}+b x+c y+d=0$, then $\frac{a d}{b c}=$
A
$\frac{5}{8}$
B
$\frac{5}{2}$
C
-10
D
10
2
TG EAPCET 2024 (Online) 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
$S=y^{2}-4 a x=0, S^{\prime}=y^{2}+a x=0$ are two parabolas and $P(t)$ is a point on the parabola $S^{\prime}=0$. If $A$ and $B$ are the feet of the perpendiculars from $P$ on to coordinate $2 x_{4}$ and $A B$ is a tangent to the parabola $S=0$ at the point $Q\left(t_{1}\right)$, then $t_{1}=$
A
t
B
$\frac{t}{4}$
C
$\frac{3 t}{4}$
D
$\frac{t}{2}$
3
TG EAPCET 2024 (Online) 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If the focal chord of the parabola $x^2=12 y$, drawn through the point $(3,0)$ intersects the parabola at the points $P$ and $Q$ then the sum of the reciprocals of the abscissae of the points $P$ and $Q$ is
A
$\frac{1}{4}$
B
$\frac{1}{5}$
C
$\frac{1}{3}$
D
$\frac{1}{8}$
4
TG EAPCET 2024 (Online) 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If the normal drawn at the point $P(9,9)$ on the parabola $y^2=9 x$ meets the parabola again at $Q(a, b)$, then $2 a+b=$
A
54
B
$\frac{99}{2}$
C
$\frac{63}{2}$
D
27
TS EAMCET Subjects
EXAM MAP