1
TG EAPCET 2024 (Online) 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
$S$ is the focus of the ellips $\frac{x^2}{25}+\frac{y^2}{b^2}=1,(b<5)$ lying on the negative $X$-axis and $P(\theta)$ is a point on this ellipes. If the distance between the foci of this ellipse is 8 and $S^{\prime} P=7$, then $\theta=$
A
$\frac{\pi}{6}$
B
$\frac{\pi}{3}$
C
$\frac{\pi}{4}$
D
$\frac{2 \pi}{3}$
2
TG EAPCET 2024 (Online) 9th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
The equations of the directrices of the elmpse $9 x^2+4 y^2-18 x-16 y-11=0$ are
A
$y=2 \pm \frac{9}{\sqrt{5}}$
B
$x=1 \pm \frac{6}{\sqrt{5}}$
C
$x=2 \pm \frac{9}{\sqrt{5}}$
D
$y=1 \pm \frac{6}{\sqrt{5}}$
3
TG EAPCET 2024 (Online) 9th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
$L_1^{\prime}$ is the end of a latus rectum of the ellipse $3x=2 \pm \frac{\sqrt{5}}{\sqrt{5}}$ $3 x^2+4 y^2=12$ which is lying in the third quadrant. If the normal drawn at $L_1^{\prime}$ to this ellipse intersects the ellipse again at the point $P(a, b)$, then $a=$
A
$\frac{63}{38}$
B
$\frac{11}{19}$
C
$-\frac{11}{19}$
D
$-\frac{63}{38}$
4
TG EAPCET 2024 (Online) 9th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $6 x-5 y-20=0$ is a normal to the ellipse $x^2+3 y^2=K$, then $K=$
A
9
B
17
C
25
D
37
TS EAMCET Subjects
EXAM MAP