With origin as a focus and $$x=4$$ as corresponding directrix, a family of ellipse are drawn. Then the locus of an end of minor axis is
The tangent at point $$(a\cos \theta ,b\sin \theta ),0 < \theta < {\pi \over 2}$$, to the ellipse $${{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$ meets the x-axis at T and y-axis at T$$_1$$. Then the value of $$\mathop {\min }\limits_{0 < \theta < {\pi \over 2}} (OT)(O{T_1})$$ is
If the lines joining the focii of the ellipse $${{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$ where $$a > b$$, and an extremity of its minor axis is inclined at an angle 60$$^\circ$$, then the eccentricity of the ellipse is
AB is a variable chord of the ellipse $${{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$. If AB subtends a right angle at the origin O, then $${1 \over {O{A^2}}} + {1 \over {O{B^2}}}$$ equals to