1
TS EAMCET 2023 (Online) 12th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

Vectors $\mathbf{p}=a \hat{\mathbf{i}}+b \hat{\mathbf{j}}+c \hat{\mathbf{k}}, \mathbf{q}=d \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$ and $\mathbf{r}=3 \hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}}$ forming a $\triangle A B C$ are such that $\mathbf{p}=\mathbf{q}+\mathbf{r}$. If the area of $\triangle A B C$ is $5 \sqrt{6}$ sq. units, then the sum of the absolute values of $a, b, c$ is

A
14
B
13
C
12
D
10
2
TS EAMCET 2023 (Online) 12th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

$\mathbf{b}$ and $\mathbf{c}$ are non-collinear vectors and $(\mathbf{c} \cdot \mathbf{c}) \mathbf{a}=\mathbf{c}$. If $(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}+(\mathbf{a} \cdot \mathbf{b}) \mathbf{b}$ $=(4-2 \beta-\sin \alpha) \mathbf{b}+\left(\beta^2-1\right) \mathbf{c}$, then $\sin (\alpha+\beta)=$

A
0
B
1
C
$\sin 1$
D
$\cos 1$
3
TS EAMCET 2023 (Online) 12th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If the position vectors of $\mathbf{P}$ and $\mathbf{Q}$ are $\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-7 \hat{\mathbf{k}}$ and $5 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$ respectively, then the cosine of the angle between $P Q$ and $Z$-axis is
A
$\frac{4}{\sqrt{162}}$
B
$\frac{11}{\sqrt{162}}$
C
$\frac{5}{\sqrt{162}}$
D
$\frac{-5}{\sqrt{162}}$
4
TS EAMCET 2023 (Online) 12th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
$\mathbf{a}, \mathbf{b}, \mathbf{c}$ are three-unit yectors such that $|\mathbf{a}+\mathbf{b}+\mathbf{c}|=1$ and $\mathbf{a}$ is perpendicular to $\mathbf{b}$. If $\mathbf{c}$ makes angles $\alpha, \beta$ with $\mathbf{a}, \mathbf{b}$ respectively, then $\cos \alpha+\cos \beta=$
A
1
B
-1
C
2
D
-2
TS EAMCET Subjects
EXAM MAP