NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

WB JEE 2010

MCQ (Single Correct Answer)

The value of $${2 \over {3!}} + {4 \over {5!}} + {6 \over {7!}} + $$ ............ is

A
e1/2
B
e$$-$$1
C
e
D
e1/3

Explanation

$${{3 - 1} \over {3!}} + {{5 - 1} \over {5!}} + {{7 - 1} \over {7!}} + \,\,.......$$

$$ = \left( {{1 \over {2!}} - {1 \over {3!}}} \right) + \left( {{1 \over {4!}} - {1 \over {5!}}} \right) + \,\,.......$$

$$ = \left( {1 - {1 \over {1!}}} \right) + \left( {{1 \over {2!}} - {1 \over {3!}}} \right) + \left( {{1 \over {4!}} - {1 \over {5!}}} \right) + \,\,.......$$

$$ = {e^{ - 1}}$$

2

WB JEE 2010

MCQ (Single Correct Answer)

If angles A, B and C are in A.P., then $${{a + c} \over b}$$ is equal to

A
$$2\sin \left( {{{A - C} \over 2}} \right)$$
B
$$2\cos \left( {{{A - C} \over 2}} \right)$$
C
$$\cos \left( {{{A - C} \over 2}} \right)$$
D
$$\sin \left( {{{A - C} \over 2}} \right)$$

Explanation

$$\because$$ A, B, C are in A.P.

$$\therefore$$ $${{A + C} \over 2} = B$$ ...... (i)

Now, $${{a + c} \over b} = {{2R\sin A + 2R\sin C} \over {2R\sin B}}$$

$$ = {{2\sin \left( {{{A + C} \over 2}} \right)\cos \left( {{{A - C} \over 2}} \right)} \over {\sin B}} = 2\cos \left( {{{A - C} \over 2}} \right)$$ [Using (i)]

3

WB JEE 2010

MCQ (Single Correct Answer)

The value of n for which $${{{x^{n + 1}} + {y^{n + 1}}} \over {{x^n} + {y^n}}}$$ is the geometric mean of x and y is

A
$$n = - {1 \over 2}$$
B
$$n = {1 \over 2}$$
C
n = 1
D
n = $$-$$ 1

Explanation

$${{{x^{n + 1}} + {y^{n + 1}}} \over {{x^n} + {y^n}}} = \sqrt {x\,.\,y} = {x^{1/2}}\,.\,{y^{1/2}}$$

$$ \Rightarrow {x^{n + 1}} + {y^{n + 1}} = {x^{n + {1 \over 2}}}{y^{1/2}} + {x^{1/2}}\,.\,{y^{n + {1 \over 2}}}$$

$$ \Rightarrow {x^{n + {1 \over 2}}}({x^{1/2}} - {y^{1/2}}) = {y^{n + {1 \over 2}}}({x^{1/2}} - {y^{1/2}})$$

$$ \Rightarrow {x^{n + {1 \over 2}}} = {y^{n + {1 \over 2}}}$$

$$ \Rightarrow {\left( {{x \over y}} \right)^{n + {1 \over 2}}} = 1 = {\left( {{x \over y}} \right)^0} \Rightarrow n + {1 \over 2} = 0$$

$$\therefore$$ $$n = - {1 \over 2}$$

4

WB JEE 2010

MCQ (Single Correct Answer)

G.M. and H.M. of two numbers are 10 and 8 respectively. The numbers are

A
5, 20
B
4, 25
C
2, 50
D
1, 100

Explanation

Let nos. be a and b

(A = A.M., G = G.M., H = H.M.)

Here, G = 10, H = 8

$$\because$$ G2 = AH $$\Rightarrow$$ 100 = 8A

$$\therefore$$ $$A = {{25} \over 2}$$

$$\therefore$$ ab = 100 & a + b = 25, which are satisfied by option (a) only.

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12