Given an A.P. and a G.P. with positive terms, with the first and second terms of the progressions being equal. If $$a_n$$ and $$b_n$$ be the $$n^{\text {th }}$$ term of A.P. and G.P. respectively then
If for the series $$a_1, a_2, a_3$$, ...... etc, $$\mathrm{a}_{\mathrm{r}}-\mathrm{a}_{\mathrm{r}+\mathrm{i}}$$ bears a constant ratio with $$\mathrm{a}_{\mathrm{r}} \cdot \mathrm{a}_{\mathrm{r}+1}$$; then $$\mathrm{a}_1, \mathrm{a}_2, \mathrm{a}_3 \ldots .$$. are in
If $$\alpha_1, \alpha_2, \ldots, \alpha_n$$ are in A.P. with common difference $$\theta$$, then the sum of the series $$ \sec \alpha_1 \sec \alpha_2+\sec \alpha_2 \sec \alpha_3+\ldots .+\sec \alpha_{n-1} \sec \alpha_n=k\left(\tan \alpha_n-\tan \alpha_1\right)$$ where $$\mathrm{k}=$$
If the n terms $${a_1},{a_2},\,......,\,{a_n}$$ are in A.P. with increment r, then the difference between the mean of their squares & the square of their mean is