NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

WB JEE 2022

MCQ (Single Correct Answer)
English
Bengali

The number of zeros at the end of $$\left| \!{\underline {\, {100} \,}} \right. $$ is

A
21
B
22
C
23
D
24

$$\left| \!{\underline {\, {100} \,}} \right. $$ -এর শেষে শূণ্যের সংখ্যা হবে

A
21
B
22
C
23
D
24
2

WB JEE 2021

MCQ (Single Correct Answer)
English
Bengali
The coefficient of a3b4c5 in the expansion of (bc + ca + ab)6 is
A
$${{12!} \over {3!4!5!}}$$
B
$${{6!} \over {3!}}$$
C
33
D
$$3\,.\,\left( {{{6!} \over {3!3!}}} \right)$$

Explanation

Given, (bc + ca + ab)6

General term = $${{6!} \over {p!q!r!}}{(bc)^p}{(ca)^q}{(ab)^r}$$

$$ = {{6!} \over {p!q!r!}}{(a)^{q + r}}{(b)^{p + r}}{(c)^{p + q}}$$

Coefficient of a3b4c5 in the expansion (bc + ca + ab)6

$$\therefore$$ q + r = 3, p + r = 4, p + q = 5

= 2(p + q + r) = 12

= p + q + r = 6

$$\therefore$$ p = 3, q = 2, r = 1

$$\therefore$$ Coefficient of a3b4c5 is $${{6!} \over {3!2!1!}} = 3\left( {{{6!} \over {3!3!}}} \right)$$
(bc + ca + ab)6 এর বিস্তৃতিতে a3b4c5 -এর সহগ হল
A
$${{12!} \over {3!4!5!}}$$
B
$${{6!} \over {3!}}$$
C
33
D
$$3\,.\,\left( {{{6!} \over {3!3!}}} \right)$$

Explanation

দেওয়া, (bc + ca + ab)6

সাধারন শর্তাবলী = $${{6!} \over {p!q!r!}}{(bc)^p}{(ca)^q}{(ab)^r}$$

$$ = {{6!} \over {p!q!r!}}{(a)^{q + r}}{(b)^{p + r}}{(c)^{p + q}}$$

সম্প্রসারণে a3b4c5 এর সহগ (bc + ca + ab)6

$$\therefore$$ q + r = 3, p + r = 4, p + q = 5

= 2(p + q + r) = 12

= p + q + r = 6

$$\therefore$$ p = 3, q = 2, r = 1

$$\therefore$$ a3b4c5 এর সহগ $${{6!} \over {3!2!1!}} = 3\left( {{{6!} \over {3!3!}}} \right)$$
3

WB JEE 2021

MCQ (Single Correct Answer)
English
Bengali
For x$$\in$$R, x $$\ne$$ $$-$$1, if $${(1 + x)^{2016}} + x{(1 + x)^{2015}} + {x^2}{(1 + x)^{2014}} + ..... + {x^{2016}} = \sum\limits_{i = 0}^{2016} {{a_i}\,.\,{x^i}} $$, then a17 is equal to
A
$${{2016!} \over {17!1999!}}$$
B
$${{2016!} \over {16!}}$$
C
$${{2017!} \over {2000!}}$$
D
$${{2017!} \over {17!2000!}}$$

Explanation

For x$$\in$$R, x $$\ne$$ $$-$$1

$${(1 + x)^{2016}} + x{(1 + x)^{2015}} + {x^2}{(1 + x)^{2014}} + ..... + {x^{2016}} = \sum\limits_{i = 0}^{2016} {{a_i}\,.\,{x^i}} $$

Here, coefficient of x17

$$ = {}^{2016}{C_{17}} + {}^{2015}{C_{16}} + {}^{2014}{C_{15}} + .... + {}^{1999}{C_0}$$

$$ = {}^{2016}{C_{1999}} + {}^{2015}{C_{1999}} + {}^{2014}{C_{1999}} + ... + {}^{1999}{C_{1999}}$$

($$\because$$ $${}^n{C_r} + {}^n{C_{r - 1}} = {}^{n + 1}{C_r}$$)

$$ = {}^{2017}{C_{2000}} = {{(2017)!} \over {(2000)!\,(2017 - 2000)!}}$$

$$ = {{2017!} \over {(2000)!\,(17)!}}$$
$${(1 + x)^{2016}} + x{(1 + x)^{2015}} + {x^2}{(1 + x)^{2014}} + ..... + {x^{2016}} = \sum\limits_{i = 0}^{2016} {{a_i}\,.\,{x^i}} $$, সকল x$$\in$$R, x $$\ne$$ $$-$$1 হলে a17 হবে
A
$${{2016!} \over {17!1999!}}$$
B
$${{2016!} \over {16!}}$$
C
$${{2017!} \over {2000!}}$$
D
$${{2017!} \over {17!2000!}}$$

Explanation

x$$\in$$R, x $$\ne$$ $$-$$1এর জন্য

$${(1 + x)^{2016}} + x{(1 + x)^{2015}} + {x^2}{(1 + x)^{2014}} + ..... + {x^{2016}} = \sum\limits_{i = 0}^{2016} {{a_i}\,.\,{x^i}} $$

এখানে, x17 এর সহগ

$$ = {}^{2016}{C_{17}} + {}^{2015}{C_{16}} + {}^{2014}{C_{15}} + .... + {}^{1999}{C_0}$$

$$ = {}^{2016}{C_{1999}} + {}^{2015}{C_{1999}} + {}^{2014}{C_{1999}} + ... + {}^{1999}{C_{1999}}$$ ($$\because$$ $${}^n{C_r} + {}^n{C_{r - 1}} = {}^{n + 1}{C_r}$$)

$$ = {}^{2017}{C_{2000}} = {{(2017)!} \over {(2000)!\,(2017 - 2000)!}}$$

$$ = {{2017!} \over {(2000)!\,(17)!}}$$
4

WB JEE 2020

MCQ (Single Correct Answer)
English
Bengali
If c0, c1, c2, ......, c15 are the binomial coefficients in the expansion

of (1 + x)15, then the value of $${{{c_1}} \over {{c_0}}} + 2{{{c_2}} \over {{c_1}}} + 3{{{c_3}} \over {{c_2}}} + ... + 15{{{c_{15}}} \over {{c_{14}}}}$$ is
A
1240
B
120
C
124
D
140

Explanation

$${(1 + x)^{15}} = {c_0} + {c_1}x + {c_0}{x^2} + ... + {c_{15}}{x^{15}}$$

Now, $${{{c_1}} \over {{c_0}}} + 2{{{c_2}} \over {{c_1}}} + 3{{{c_3}} \over {{c_2}}} + ... + 15{{{c_{15}}} \over {{c_{14}}}}$$

$${{15 + 1 - 1} \over 1} + {{2(15 + 1 - 2)} \over 2} + {{3(15 + 1 - 3)} \over 3} + ... + {{15(15 + 1 - 15)} \over {15}}$$
$$\left[ {{{{}^n{C_r}} \over {{}^n{C_{r - 1}}}} = {{n + 1 - r} \over r}\,Here,\,n = 15} \right]$$

$$ \therefore $$ 15 + 14 + 13 + ... + 1 = $${{15 \times 16} \over 2} = 120$$

$${(1 + x)^{15}}$$ এর বিস্তৃতিতে $${c_0},\,{c_1},\,{c_2},\,.....\,{c_{15}}$$ দ্বিঘাত সহগ হলে $${{{c_1}} \over {{c_0}}} + 2{{{c_2}} \over {{c_1}}} + 3{{{c_3}} \over {{c_2}}} + .... + 15{{{c_{15}}} \over {{c_{14}}}}$$ এর মান হবে

A
1240
B
120
C
124
D
140

Explanation

$${t_1} = r.{{15{C_r}} \over {15{C_{r - 1}}}} = {{r.\left| \!{\underline {\, {15} \,}} \right. } \over {\left| \!{\underline {\, r \,}} \right. \left| \!{\underline {\, {15 - r} \,}} \right. }}.{{\left| \!{\underline {\, {r - 1} \,}} \right. \left| \!{\underline {\, {15 - r + 1} \,}} \right. } \over {\left| \!{\underline {\, {15} \,}} \right. }}$$

$$ = 16 = r$$

$$\sum\limits_{r = 1}^{15} {{t_1} = 16 \times 15 - (1 + 2 + 3 + .... + 15)} $$

$$ = 240 - 120 = 120$$

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12