1
WB JEE 2023
+2
-0.5 The average ordinate of $$y = \sin x$$ over $$[0,\pi ]$$ is :

A
$${2 \over \pi }$$
B
$${3 \over \pi }$$
C
$${4 \over \pi }$$
D
$$\pi$$
2
WB JEE 2022
+1
-0.25 Let f be derivable in [0, 1], then

A
there exists $$c \in (0,1)$$ such that $$\int\limits_0^c {f(x)dx = (1 - c)f(c)}$$
B
there does not exist any point $$d \in (0,1)$$ for which $$\int\limits_0^d {f(x)dx = (1 - d)f(d)}$$
C
$$\int\limits_0^c {f(x)dx}$$ does not exist, for any $$c \in (0,1)$$
D
$$\int\limits_0^c {f(x)dx}$$ is independent of $$c,c \in (0,1)$$
3
WB JEE 2022
+1
-0.25 The value of $$\int\limits_0^{{\pi \over 2}} {{{{{(\cos x)}^{\sin x}}} \over {{{(\cos x)}^{\sin x}} + {{(\sin x)}^{\cos x}}}}dx}$$ is

A
$${\pi \over 4}$$
B
0
C
$${\pi \over 2}$$
D
$${1 \over 2}$$
4
WB JEE 2022
+1
-0.25 Let $$\mathop {\lim }\limits_{ \in \to 0 + } \int\limits_ \in ^x {{{bt\cos 4t - a\sin 4t} \over {{t^2}}}dt = {{a\sin 4x} \over x} - 1,\left( {0 < x < {\pi \over 4}} \right)}$$. Then a and b are given by

A
$$a = 2,b = 2$$
B
$$a = {1 \over 4},b = 1$$
C
$$a = - 1,b = 4$$
D
$$a = 2,b = 4$$
WB JEE Subjects
Physics
Mechanics
Electricity
Optics
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Coordinate Geometry
Calculus
EXAM MAP
Joint Entrance Examination