1
WB JEE 2022
MCQ (Single Correct Answer)
+1
-0.25
Change Language

Let f be derivable in [0, 1], then

A
there exists $$c \in (0,1)$$ such that $$\int\limits_0^c {f(x)dx = (1 - c)f(c)} $$
B
there does not exist any point $$d \in (0,1)$$ for which $$\int\limits_0^d {f(x)dx = (1 - d)f(d)} $$
C
$$\int\limits_0^c {f(x)dx} $$ does not exist, for any $$c \in (0,1)$$
D
$$\int\limits_0^c {f(x)dx} $$ is independent of $$c,c \in (0,1)$$
2
WB JEE 2022
MCQ (Single Correct Answer)
+1
-0.25
Change Language

The value of $$\int\limits_0^{{\pi \over 2}} {{{{{(\cos x)}^{\sin x}}} \over {{{(\cos x)}^{\sin x}} + {{(\sin x)}^{\cos x}}}}dx} $$ is

A
$${\pi \over 4}$$
B
0
C
$${\pi \over 2}$$
D
$${1 \over 2}$$
3
WB JEE 2022
MCQ (Single Correct Answer)
+1
-0.25
Change Language

Let $$\mathop {\lim }\limits_{ \in \to 0 + } \int\limits_ \in ^x {{{bt\cos 4t - a\sin 4t} \over {{t^2}}}dt = {{a\sin 4x} \over x} - 1,\left( {0 < x < {\pi \over 4}} \right)} $$. Then a and b are given by

A
$$a = 2,b = 2$$
B
$$a = {1 \over 4},b = 1$$
C
$$a = - 1,b = 4$$
D
$$a = 2,b = 4$$
4
WB JEE 2022
MCQ (Single Correct Answer)
+1
-0.25
Change Language

Let $$f(x) = \int\limits_{\sin x}^{\cos x} {{e^{ - {t^2}}}dt} $$. Then $$f'\left( {{\pi \over 4}} \right)$$ equals

A
$$\sqrt {{1 \over e}} $$
B
$$ - \sqrt {{2 \over e}} $$
C
$$\sqrt {{2 \over e}} $$
D
$$ - \sqrt {{1 \over e}} $$
WB JEE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12