The acceleration f $$\mathrm{ft} / \mathrm{sec}^2$$ of a particle after a time $$\mathrm{t}$$ sec starting from rest is given by $$\mathrm{f}=6-\sqrt{1.2 \mathrm{t}}$$. Then the maximum velocity $$\mathrm{v}$$ and time $$\mathrm{T}$$ to attend this velocity are
A balloon starting from rest is ascending from ground with uniform acceleration of 4 ft/sec$$^2$$. At the end of 5 sec, a stone is dropped from it. If T be the time to reach the stone to the ground and H be the height of the balloon when the stone reaches the ground, then
If $$f(x) = 3\root 3 \of {{x^2}} - {x^2}$$, then
From a balloon rising vertically with uniform velocity v ft/sec a piece of stone is let go. The height of the balloon above the ground when the stone reaches the ground after 4 sec is [g = 32 ft/sec2]