1
WB JEE 2023
MCQ (More than One Correct Answer)
+2
-0
Change Language

Let $$f(x) = {x^m}$$, m being a non-negative integer. The value of m so that the equality $$f'(a + b) = f'(a) + f'(b)$$ is valid for all a, b > 0 is

A
0
B
1
C
2
D
3
2
WB JEE 2020
MCQ (More than One Correct Answer)
+2
-0
Change Language
Let $$y = {{{x^2}} \over {{{(x + 1)}^2}(x + 2)}}$$. Then $${{{d^2}y} \over {d{x^2}}}$$ is
A
$$2\left[ {{3 \over {{{(x + 1)}^4}}} - {3 \over {{{(x + 1)}^3}}} + {4 \over {{{(x + 2)}^3}}}} \right]$$
B
$$3\left[ {{2 \over {{{(x + 1)}^3}}} + {4 \over {{{(x + 1)}^2}}} - {5 \over {{{(x + 2)}^3}}}} \right]$$
C
$${6 \over {{{(x + 1)}^3}}} - {4 \over {{{(x + 1)}^2}}} + {3 \over {{{(x + 1)}^3}}}$$
D
$${7 \over {{{(x + 1)}^3}}} - {3 \over {{{(x + 1)}^2}}} + {2 \over {{{(x + 1)}^3}}}$$
3
WB JEE 2019
MCQ (More than One Correct Answer)
+2
-0
Change Language
Let f and g be differentiable on the interval I and let a, b $$ \in $$ I, a < b. Then,
A
If f(a) = 0 = f(b), the equation f'(x) + f(x)g'(x) = 0 is soluble in (a, b)
B
If f(a) = 0 = f(b), the equation f'(x) + f(x)g'(x) = 0 may not be soluble in (a, b)
C
If g(a) = 0 = g(b), the equation g'(x) + kg(x) = 0 is soluble in (a, b), k $$ \in $$ R
D
If g(a) = 0 = g(b), the equation g'(x) + kg(x) = 0 may not be soluble in (a, b), k $$ \in $$ R
4
WB JEE 2017
MCQ (More than One Correct Answer)
+2
-0
Change Language
If f(x) = xn, being a non-negative integer, then the values of n for which f'($$\alpha$$ + $$\beta$$) = f'($$\alpha$$) + f'($$\beta$$) for all $$\alpha$$, $$\beta$$ > 0 is
A
1
B
2
C
0
D
5
WB JEE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12