1
WB JEE 2024
MCQ (Single Correct Answer)
+1
-0.25
Change Language

Let $$f: \mathbb{R} \rightarrow \mathbb{R}$$ be a differentiable function and $$f(1)=4$$. Then the value of $$\lim _\limits{x \rightarrow 1} \int_\limits4^{f(x)} \frac{2 t}{x-1} d t$$, if $$f^{\prime}(1)=2$$ is

A
16
B
8
C
4
D
2
2
WB JEE 2024
MCQ (Single Correct Answer)
+2
-0.5
Change Language

Let $$\mathrm{I}(\mathrm{R})=\int_\limits0^{\mathrm{R}} \mathrm{e}^{-\mathrm{R} \sin x} \mathrm{~d} x, \mathrm{R}>0$$. then,

A
$$I(R)>\frac{\pi}{2 R}\left(1-e^{-R}\right)$$
B
$$I(R)<\frac{\pi}{2 R}\left(1-e^{-R}\right)$$
C
$$I(R)=\frac{\pi}{2 R}\left(1-e^{-R}\right)$$
D
$$I(R) \text { and } \frac{\pi}{2 R}(1-e^{-R}) \text { are not comparable }$$
3
WB JEE 2024
MCQ (Single Correct Answer)
+2
-0.5
Change Language

$$\lim _\limits{n \rightarrow \infty} \frac{1}{n^{k+1}}[2^k+4^k+6^k+\ldots .+(2 n)^k]=$$

A
$$\frac{2^k}{k}$$
B
$$\frac{2^{k+1}}{k+1}$$
C
$$\frac{2^k}{k+1}$$
D
$$\frac{2^{\mathrm{k}}}{\mathrm{k}-1}$$
4
WB JEE 2023
MCQ (Single Correct Answer)
+1
-0.25
Change Language

the expression $${{\int\limits_0^n {[x]dx} } \over {\int\limits_0^n {\{ x\} dx} }}$$, where $$[x]$$ and $$\{ x\} $$ are respectively integral and fractional part of $$x$$ and $$n \in N$$, is equal to

A
$${1 \over {n - 1}}$$
B
$${1 \over n}$$
C
$$n$$
D
$$n-1$$
WB JEE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12