Let $$A = \left( {\matrix{ 2 & 0 & 3 \cr 4 & 7 & {11} \cr 5 & 4 & 8 \cr } } \right)$$. Then
If the matrix Mr is given by $${M_r} = \left( {\matrix{ r & {r - 1} \cr {r - 1} & r \cr } } \right)$$ for r = 1, 2, 3, ... then det (M1) + det (M2) + ... + det (M2008) =
Let $$\alpha,\beta$$ be the roots of the equation $$a{x^2} + bx + c = 0,a,b,c$$ real and $${s_n} = {\alpha ^n} + {\beta ^n}$$ and $$\left| {\matrix{ 3 & {1 + {s_1}} & {1 + {s_2}} \cr {1 + {s_1}} & {1 + {s_2}} & {1 + {s_3}} \cr {1 + {s_2}} & {1 + {s_3}} & {1 + {s_4}} \cr } } \right| = k{{{{(a + b + c)}^2}} \over {{a^4}}}$$ then $$k = $$
Let $$A = \left( {\matrix{ 0 & 0 & 1 \cr 1 & 0 & 0 \cr 0 & 0 & 0 \cr } } \right),B = \left( {\matrix{ 0 & 1 & 0 \cr 0 & 0 & 1 \cr 0 & 0 & 0 \cr } } \right)$$ and $$P\left( {\matrix{ 0 & 1 & 0 \cr x & 0 & 0 \cr 0 & 0 & y \cr } } \right)$$ be an orthogonal matrix such that $$B = PA{P^{ - 1}}$$ holds. Then