NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

WB JEE 2009

MCQ (Single Correct Answer)

If three positive real numbers a, b, c are in A.P. and abc = 4 then the minimum possible value of b is

A
23/2
B
22/3
C
21/3
D
25/2

Explanation

$${{a + c} \over 2} \ge \sqrt {ac} \Rightarrow b \ge \sqrt {{4 \over b}} $$

$$ \Rightarrow {b^{3/2}} \ge 2 \Rightarrow b \ge {2^{2/3}}$$

2

WB JEE 2009

MCQ (Single Correct Answer)

If a, b, c are G.P. (a > 1, b > 1, c > 1), then for any real number x (with x > 0, x $$\ne$$ 1) logax, logbx, logcx are in

A
G.P.
B
A.P.
C
H.P.
D
G.P. but not in H.P.

Explanation

$${b^2} = ac$$ ($$\because$$ a, b, c are in G.P.)

$$ \Rightarrow 2{\log _x}b = {\log _x}ac = {\log _x}a + {\log _x}c$$

(Taking log on base x)

$$ \Rightarrow {2 \over {{{\log }_b}x}} = {1 \over {{{\log }_a}x}} + {1 \over {{{\log }_c}x}}$$

$$\Rightarrow$$ logax, logbx, logcx are in H.P.

3

WB JEE 2008

MCQ (Single Correct Answer)

The sum of the infinite series $${\left( {{1 \over 3}} \right)^2} + {1 \over 3}{\left( {{1 \over 3}} \right)^4} + {1 \over 5}{\left( {{1 \over 3}} \right)^6} + ...$$ is

A
$${1 \over 4}{\log _e}2$$
B
$${1 \over 2}{\log _e}2$$
C
$${1 \over 6}{\log _e}2$$
D
$${1 \over 4}{\log _e}{3 \over 2}$$

Explanation

$$\because$$ $${\log _e}(1 + x) = x - {{{x^2}} \over 2} + {{{x^3}} \over 3} - {{{x^4}} \over 4} + ...\,|x| < 1$$

$${\log _e}(1 - x) = - x - {{{x^2}} \over 2} - {{{x^3}} \over 3} - {{{x^4}} \over 4} - ...$$

On subtracting

$$lo{g_e}(1 + x) - {\log _e}(1 - x) = 2\left( {x + {{{x^3}} \over 3} + {{{x^5}} \over 5} + ...} \right)$$ ..... (i)

$$\therefore$$ $${\left( {{1 \over 3}} \right)^2} + {1 \over 3}{\left( {{1 \over 3}} \right)^4} + {1 \over 5}{\left( {{1 \over 3}} \right)^6} + ...$$

$$ = {1 \over 3}\left[ {{1 \over 3} + {1 \over 3}{{\left( {{1 \over 3}} \right)}^3} + {1 \over 5}{{\left( {{1 \over 3}} \right)}^5} + ....} \right]$$

$$ = {1 \over {2 \times 3}}\left[ {{{\log }_e}\left( {1 + {1 \over 3}} \right) - \log \left( {1 - {1 \over 3}} \right)} \right] = {1 \over 6}{\log _e}\left[ {{4 \over 3} \times {3 \over 2}} \right]$$

$$ = {1 \over 6}{\log _e}2$$.

4

WB JEE 2008

MCQ (Single Correct Answer)

If three real numbers a, b, c are in Harmonic Progression, then which of the following is true?

A
$${1 \over a},b,{1 \over c}$$ are in A.P.
B
$${1 \over {bc}},{1 \over {ca}},{1 \over {ab}}$$ are in H.P.
C
ab, bc, ca are in H.P.
D
$${a \over b},{b \over c},{c \over a}$$ are in H.P.

Explanation

a, b, c are in H.P.

or, $${1 \over a},{1 \over b},{1 \over c}$$ are in A.P. (reciprocal of H.P. is A.P.)

or, $${{abc} \over a},{{abc} \over b},{{abc} \over c}$$ are in A.P. (multiplying by abc)

or, bc, ac, ab are in A.P.

or, $${1 \over {bc}},{1 \over {ac}},{1 \over {ab}}$$ are in H.P. (reciprocal of A.P. is H.P.)

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12