1
WB JEE 2024
+1
-0.25

If for the series $$a_1, a_2, a_3$$, ...... etc, $$\mathrm{a}_{\mathrm{r}}-\mathrm{a}_{\mathrm{r}+\mathrm{i}}$$ bears a constant ratio with $$\mathrm{a}_{\mathrm{r}} \cdot \mathrm{a}_{\mathrm{r}+1}$$; then $$\mathrm{a}_1, \mathrm{a}_2, \mathrm{a}_3 \ldots .$$. are in

A
A.P.
B
G.P.
C
H.P.
D
Any other series
2
WB JEE 2024
+2
-0.5

If $$\alpha_1, \alpha_2, \ldots, \alpha_n$$ are in A.P. with common difference $$\theta$$, then the sum of the series $$\sec \alpha_1 \sec \alpha_2+\sec \alpha_2 \sec \alpha_3+\ldots .+\sec \alpha_{n-1} \sec \alpha_n=k\left(\tan \alpha_n-\tan \alpha_1\right)$$ where $$\mathrm{k}=$$

A
$$\sin \theta$$
B
$$\cos \theta$$
C
$$\sec \theta$$
D
$$\operatorname{cosec} \theta$$
3
WB JEE 2023
+1
-0.25

If the n terms $${a_1},{a_2},\,......,\,{a_n}$$ are in A.P. with increment r, then the difference between the mean of their squares & the square of their mean is

A
$${{{r^2}\{ {{(n - 1)}^2} - 1\} } \over {12}}$$
B
$${{{r^2}} \over {12}}$$
C
$${{{r^2}({n^2} - 1)} \over {12}}$$
D
$${{{n^2} - 1} \over {12}}$$
4
WB JEE 2023
+1
-0.25

If $$1,{\log _9}({3^{1 - x}} + 2),{\log _3}({4.3^x} - 1)$$ are in A.P., then x equals

A
$${\log _3}4$$
B
$$1 - {\log _3}4$$
C
$$1 - {\log _4}3$$
D
$${\log _4}3$$
EXAM MAP
Medical
NEET