If $$\Delta (x) = \left| {\matrix{ {x - 2} & {{{(x - 1)}^2}} & {{x^3}} \cr {x - 1} & {{x^2}} & {{{(x + 1)}^3}} \cr x & {{{(x + 1)}^2}} & {{{(x + 2)}^3}} \cr } } \right|$$, then coefficient of x in $$\Delta$$x is
If $$p = \left[ {\matrix{ 1 & \alpha & 3 \cr 1 & 3 & 3 \cr 2 & 4 & 4 \cr } } \right]$$ is the adjoint of the $$3 \times 3$$ matrix A and det A = 4, then $$\alpha$$ is equal to
If $$A = \left( {\matrix{ 1 & 1 \cr 0 & i \cr } } \right)$$ and $${A^{2018}} = \left( {\matrix{ a & b \cr c & d \cr } } \right)$$, then $$(a + d)$$ equals
The solution of $$\det (A - \lambda {I_2}) = 0$$ be 4 and 8 and $$A = \left( {\matrix{ 2 & 2 \cr x & y \cr } } \right)$$. Then
(I2 is identity matrix of order 2)