NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

WB JEE 2009

MCQ (Single Correct Answer)

If A and B are square matrices of the same order and AB = 3I, then A$$-$$1 is equal to

A
3B
B
$${1 \over 3}$$B
C
3B$$-$$1
D
$${1 \over 3}$$B$$-$$1

Explanation

Given AB = 3I

$${A^{ - 1}}(AB) = {A^{ - 1}}(3I)$$ pre-multiplication by A$$-$$1

$$ \Rightarrow {A^{ - 1}}AB = 3{A^{ - 1}}I$$

$$ \Rightarrow IB = 3{A^{ - 1}}$$ ($$\because$$ $${A^{ - 1}}A = I$$)

$$ \Rightarrow B = 3{A^{ - 1}} \Rightarrow {A^{ - 1}} = {1 \over 3}B$$

2

WB JEE 2009

MCQ (Single Correct Answer)

If A2 $$-$$ A + I = 0, then the inverse of the matrix A is

A
A $$-$$ I
B
I $$-$$ A
C
A + I
D
A

Explanation

A(A $$-$$ I) = $$-$$I

$$\Rightarrow$$ A(I $$-$$ A) = I $$\Rightarrow$$ A$$-$$1 = I $$-$$ A.

3

WB JEE 2009

MCQ (Single Correct Answer)

If A is a square matrix. Then

A
A + AT is symmetric
B
AAT is skew-symmetric
C
AT + A is skew-symmetric
D
ATA is skew-symmetric

Explanation

Let B = A + AT

$$\therefore$$ BT = (A + AT)T = AT + (AT)T = AT + A ($$\because$$ (A + B)T = BT + AT, (AT)T = A)

= A + AT = B (If AT = A, then A is symmetric)

$$\therefore$$ A + AT is symmetric.

4

WB JEE 2008

MCQ (Single Correct Answer)

If the matrix $$\left[ {\matrix{ a & b \cr c & d \cr } } \right]$$ is commutative with the matrix $$\left[ {\matrix{ 1 & 1 \cr 0 & 1 \cr } } \right]$$ then

A
a = 0, b = c
B
b = 0, c = d
C
c = 0, d = a
D
d = 0, a = b

Explanation

Matrix $$\left[ {\matrix{ a & b \cr c & d \cr } } \right]$$ is commutative with the matrix $$\left[ {\matrix{ 1 & 1 \cr 0 & 1 \cr } } \right]$$

If we consider two matrices A and B are commutative on product then AB = BA

$$ \Rightarrow \left[ {\matrix{ a & b \cr c & d \cr } } \right]\left[ {\matrix{ 1 & 1 \cr 0 & 1 \cr } } \right] = \left[ {\matrix{ 1 & 1 \cr 0 & 1 \cr } } \right]\left[ {\matrix{ a & b \cr c & d \cr } } \right]$$

$$ \Rightarrow \left[ {\matrix{ a & {a + b} \cr c & {c + d} \cr } } \right] = \left[ {\matrix{ {a + c} & {b + d} \cr c & d \cr } } \right]$$

Comparing corresponding elements of two matrices, we get

$$\Rightarrow$$ a + c = a, a + b = b + d and c + d = d

$$\Rightarrow$$ c = 0, a = d and c = 0.

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12