1
WB JEE 2022
MCQ (Single Correct Answer)
+1
-0.25
Change Language

If $$A = \left( {\matrix{ 1 & 1 \cr 0 & i \cr } } \right)$$ and $${A^{2018}} = \left( {\matrix{ a & b \cr c & d \cr } } \right)$$, then $$(a + d)$$ equals

A
1 + i
B
0
C
2
D
2018
2
WB JEE 2022
MCQ (Single Correct Answer)
+2
-0.5
Change Language

The solution of $$\det (A - \lambda {I_2}) = 0$$ be 4 and 8 and $$A = \left( {\matrix{ 2 & 2 \cr x & y \cr } } \right)$$. Then

(I2 is identity matrix of order 2)

A
$$x = 4,y = 10$$
B
$$x = 5,y = 8$$
C
$$x = 3,y = 9$$
D
$$x = - 4,y = 10$$
3
WB JEE 2021
MCQ (Single Correct Answer)
+1
-0.25
Change Language
If M is a 3 $$\times$$ 3 matrix such that (0, 1, 2) M = (1 0 0), (3, 4 5) M = (0, 1, 0), then (6 7 8) M is equal to
A
(2 1 $$-$$2)
B
(0 0 1)
C
($$-$$1 2 0)
D
(9 10 8)
4
WB JEE 2021
MCQ (Single Correct Answer)
+1
-0.25
Change Language
Let $$A = \left( {\matrix{ 1 & 0 & 0 \cr 0 & {\cos t} & {\sin t} \cr 0 & { - \sin t} & {\cos t} \cr } } \right)$$

Let $$\lambda$$1, $$\lambda$$2, $$\lambda$$3 be the roots of $$\det (A - \lambda {I_3}) = 0$$, where I3 denotes the identity matrix. If $$\lambda$$1 + $$\lambda$$2 + $$\lambda$$3 = $$\sqrt 2 $$ + 1, then the set of possible values of t, $$-$$ $$\pi$$ $$\ge$$ t < $$\pi$$ is
A
a void set
B
$$\left\{ {{\pi \over 4}} \right\}$$
C
$$\left\{ { - {\pi \over 4},{\pi \over 4}} \right\}$$
D
$$\left\{ { - {\pi \over 3},{\pi \over 3}} \right\}$$
WB JEE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12