1
WB JEE 2024
MCQ (More than One Correct Answer)
+2
-0

$$\text { The points of extremum of } \int_\limits0^{x^2} \frac{t^2-5 t+4}{2+e^t} d t \text { are }$$

A
$$\pm$$ 1
B
$$\pm$$ 2
C
$$\pm$$ 3
D
$$\pm$$ $$\sqrt2$$
2
WB JEE 2023
MCQ (More than One Correct Answer)
+2
-0

Let f be a non-negative function defined on $$\left[ {0,{\pi \over 2}} \right]$$. If $$\int\limits_0^x {(f'(t) - \sin 2t)dt = \int\limits_x^0 {f(t)\tan t\,dt} } ,f(0) = 1$$ then $$\int\limits_0^{{\pi \over 2}} {f(x)dx}$$ is

A
3
B
$$3 - {\pi \over 2}$$
C
$$3 + {\pi \over 2}$$
D
$${\pi \over 2}$$
3
WB JEE 2023
MCQ (More than One Correct Answer)
+2
-0

Which of the following statements are true?

A
If f(x) be continuous and periodic with periodicity T, then $$I = \int\limits_a^{a + T} {f(x)} ~dx$$ depend on 'a'.
B
If f(x) be continuous and periodic with periodicity T, then $$I = \int\limits_a^{a + T} {f(x)} ~dx$$ does not depend on 'a'.
C
Let $$\mathrm{f(x)} = \left\{ \matrix{ 1,\,\,\,\mathrm{if\,x\,is\,rational} \hfill \cr 0,\,\,\mathrm{if\,x\,is\,irrational} \hfill \cr} \right.$$, then f is periodic of the periodicity T only if T is rational.
D
f defined in (C) is periodic for all T.
4
WB JEE 2021
MCQ (More than One Correct Answer)
+2
-0
Whichever of the following is/are correct?
A
To evaluate $${I_1} = \int\limits_{ - 2}^2 {{{dx} \over {4 + {x^2}}}}$$, it is possible to $$x = {1 \over t}$$
B
To evaluate $${I_2} = \int\limits_0^1 {\sqrt {({x^2} + 1)} dx}$$, it is possible to put $$x = \sec t$$
C
To evaluate $${I_2} = \int\limits_0^1 {\sqrt {({x^2} + 1)} dx}$$, it is not possible to put $$x = \cos ec\theta$$
D
To evaluate I1, it is not possible to put $$x = {1 \over t}$$
EXAM MAP
Medical
NEET