1
WB JEE 2024
MCQ (Single Correct Answer)
+1
-0.25
Change Language

$$ \text { If }\left|\begin{array}{lll} x^k & x^{k+2} & x^{k+3} \\ y^k & y^{k+2} & y^{k+3} \\ z^k & z^{k+2} & z^{k+3} \end{array}\right|=(x-y)(y-z)(z-x)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right) \text {, then } $$

A
k = $$-$$3
B
k = 3
C
k = 1
D
k = $$-$$1
2
WB JEE 2024
MCQ (Single Correct Answer)
+1
-0.25
Change Language

If $$\left[\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right] \cdot A \cdot\left[\begin{array}{cc}-3 & 2 \\ 5 & -3\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$$, then $$A=$$

A
$$\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$$
B
$$\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$$
C
$$\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$$
D
$$\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$$
3
WB JEE 2024
MCQ (Single Correct Answer)
+2
-0.5
Change Language

Let $$A=\left(\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & -1 \\ 1 & 1 & 1\end{array}\right), B=\left(\begin{array}{l}2 \\ 1 \\ 7\end{array}\right)$$

Then for the validity of the result $$\mathrm{AX}=\mathrm{B}, \mathrm{X}$$ is

A
$$\left(\begin{array}{c}-1 \\ 1 \\ 7\end{array}\right)$$
B
$$\left(\begin{array}{l}1 \\ 2 \\ 4\end{array}\right)$$
C
$$\left(\begin{array}{c}3 \\ 1 \\ -1\end{array}\right)$$
D
$$\left(\begin{array}{l}4 \\ 2 \\ 1\end{array}\right)$$
4
WB JEE 2024
MCQ (Single Correct Answer)
+2
-0.5
Change Language

Let $$A=\left[\begin{array}{ccc}0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0\end{array}\right]$$, then

A
$$\mathrm{A}$$ is a null matrix
B
$$\mathrm{A}$$ is skew symmetric matrix
C
$$\mathrm{A}^{-1}$$ does not exist
D
$$\mathrm{A}^2=\mathrm{I}$$
WB JEE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12