1
TG EAPCET 2024 (Online) 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If the function $f(x)=x^3+a x^2+b x+40$ satisfies the conditions of Rolle's theorem on the interval $[-5,4]$ and $-5,4$ are two roots of the equation $f(x)=0$, then one of the values of $c$ as stated in that theorem is
A
3
B
$\frac{1+\sqrt{67}}{3}$
C
$\frac{1+\sqrt{65}}{3}$
D
-2
2
TG EAPCET 2024 (Online) 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $x$ and $y$ are two positive integers such that $x+y=24$ and $x^3 y^5$ is maximum, then $x^2+y^2=$
A
288
B
296
C
306
D
320
3
TG EAPCET 2024 (Online) 9th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $4+3 x-7 x^2$ attains its maximum value $M$ at $x=\alpha$ and $5 x^2-2 x+1$ attains its minimum value $m$ at $x=\beta$, then $\frac{28(M-a)}{5(m+\beta)}=$
A
28
B
23
C
5
D
1
4
TG EAPCET 2024 (Online) 9th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $x=\cos 2 t+\log (\tan t)$ and $y=2 t+\cot 2 t$, then $\frac{d y}{d x}=$
A
$\tan 2 t$
B
$-\operatorname{cosec} 2 t$
C
$-\cot 2 t$
D
$\sec 2 t$
TS EAMCET Subjects
EXAM MAP