1
TG EAPCET 2024 (Online) 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If the extremities of the latus recta having positive ordinate of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(a > b)$ lie on the parabola $x^{2}+2 a y-4=0$, then the points $(a, b)$ lie on the curve
A
$x y=4$
B
$x^{2}+y^{2}=4$
C
$\frac{x^{2}}{4}+\frac{y^{2}}{1}=1$
D
$\frac{x^{2}}{4}-\frac{y^{2}}{1}=1$
2
TG EAPCET 2024 (Online) 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
The length of the latus rectum of the ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b)$ is $\frac{8}{3}$. If the distance from the centre of the ellipse to its focus is $\sqrt{5}$, then $\sqrt{a^2+6 a b+b^2}=$
A
7
B
$12 \sqrt{2}$
C
$3 \sqrt{5}$
D
11
3
TG EAPCET 2024 (Online) 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
$S$ is the focus of the ellips $\frac{x^2}{25}+\frac{y^2}{b^2}=1,(b<5)$ lying on the negative $X$-axis and $P(\theta)$ is a point on this ellipes. If the distance between the foci of this ellipse is 8 and $S^{\prime} P=7$, then $\theta=$
A
$\frac{\pi}{6}$
B
$\frac{\pi}{3}$
C
$\frac{\pi}{4}$
D
$\frac{2 \pi}{3}$
4
TG EAPCET 2024 (Online) 9th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
The equations of the directrices of the elmpse $9 x^2+4 y^2-18 x-16 y-11=0$ are
A
$y=2 \pm \frac{9}{\sqrt{5}}$
B
$x=1 \pm \frac{6}{\sqrt{5}}$
C
$x=2 \pm \frac{9}{\sqrt{5}}$
D
$y=1 \pm \frac{6}{\sqrt{5}}$
TS EAMCET Subjects
EXAM MAP