1
TG EAPCET 2024 (Online) 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If the extremities of the latus recta having positive ordinate of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(a > b)$ lie on the parabola $x^{2}+2 a y-4=0$, then the points $(a, b)$ lie on the curve
A
$x y=4$
B
$x^{2}+y^{2}=4$
C
$\frac{x^{2}}{4}+\frac{y^{2}}{1}=1$
D
$\frac{x^{2}}{4}-\frac{y^{2}}{1}=1$
2
TG EAPCET 2024 (Online) 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
The length of the latus rectum of the ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b)$ is $\frac{8}{3}$. If the distance from the centre of the ellipse to its focus is $\sqrt{5}$, then $\sqrt{a^2+6 a b+b^2}=$
A
7
B
$12 \sqrt{2}$
C
$3 \sqrt{5}$
D
11
3
TG EAPCET 2024 (Online) 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
$S$ is the focus of the ellips $\frac{x^2}{25}+\frac{y^2}{b^2}=1,(b<5)$ lying on the negative $X$-axis and $P(\theta)$ is a point on this ellipes. If the distance between the foci of this ellipse is 8 and $S^{\prime} P=7$, then $\theta=$
A
$\frac{\pi}{6}$
B
$\frac{\pi}{3}$
C
$\frac{\pi}{4}$
D
$\frac{2 \pi}{3}$
4
TG EAPCET 2024 (Online) 9th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
The equations of the directrices of the elmpse $9 x^2+4 y^2-18 x-16 y-11=0$ are
A
$y=2 \pm \frac{9}{\sqrt{5}}$
B
$x=1 \pm \frac{6}{\sqrt{5}}$
C
$x=2 \pm \frac{9}{\sqrt{5}}$
D
$y=1 \pm \frac{6}{\sqrt{5}}$
TS EAMCET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12