1
TG EAPCET 2024 (Online) 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If Rolle's Theorem is applicable for the function $f(x)=\left\{\begin{array}{cl}x^{p} \log x, & x \neq 0 \\ 0, & x=0\end{array}\right.$ on the interval $[0,1]$, then a possible value of $p$ is
A
-2
B
-1
C
0
D
1
2
TG EAPCET 2024 (Online) 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $\lim \limits_{x \rightarrow 4} \frac{2 x^2+(3+2 a) x+3 a}{x^3-2 x^2-23 x+60}=\frac{11}{9}$, then $\lim \limits_{x \rightarrow a} \frac{x^2+9 x+20}{x^2-x-20}=$
A
-9
B
-4
C
$-\frac{1}{4}$
D
$-\frac{1}{9}$
3
TG EAPCET 2024 (Online) 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If the function $$ f(x)= \begin{cases}\frac{\tan a(x-1)}{x-1}, & \text { if } 04\end{cases} $$ domain, then $6 a+9 b^4=$
A
284
B
261
C
214
D
317
4
TG EAPCET 2024 (Online) 9th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
$\lim _{\theta \rightarrow \frac{\pi^{-}}{2}} \frac{8 \tan ^4 \theta+4 \tan ^2 \theta+5}{(3-2 \tan \theta)^4}=$
A
$-\frac{1}{2}$
B
$\frac{1}{2}$
C
-4
D
1
TS EAMCET Subjects
EXAM MAP