1
TG EAPCET 2024 (Online) 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $a, b$ and $c$ are the intercepts made on $X, Y, Z$-axes respectively by the plane passing through the points $(1,0,-2),(3,-1,2)$ and $(0,-3,4)$, then $3 a+4 b+7 c=$
A
-5
B
5
C
-15
D
15
2
TG EAPCET 2024 (Online) 9th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $\hat{\mathbf{i}}+\hat{\mathbf{j}}, \hat{\mathbf{j}}+\hat{\mathbf{k}}, \hat{\mathbf{k}}+\hat{\mathbf{i}}, \hat{\mathbf{i}}-\hat{\mathbf{j}}, \hat{\mathbf{j}}-\hat{\mathbf{k}}$ are the position vectors of the points $A, B, C, D, E$ respectively, then the point of intersection of the line $A B$ and the plane passing through $C, D, E$ is.
A
$\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$
B
$\frac{1}{2} \hat{\mathbf{i}}+\hat{\mathrm{j}}+\frac{1}{2} \hat{\mathbf{k}}$
C
$\left.\frac{1}{2} \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}\right)$
D
$\frac{1}{2} \hat{i}-\hat{j}+\frac{1}{2} \hat{k}$
3
TG EAPCET 2024 (Online) 9th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
A plane $(\pi)$ passing through the point $(1,2,-3)$ is perpendicular to the planes $x+y-z+4=0$ and $2 x-y+z+1=0$. If the equation of the plane $(\pi)$ is $a x+b y+c z+1=0$, then $a^2+b^2+c^2=$
A
4
B
3
C
2
D
1
4
TG EAPCET 2024 (Online) 9th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If the ratio of the perpendicular distances of a variable point $P(x, y, z)$ from the $X$-axis and from the $Y Z$ - plane is $2: 3$, then the equation of the locus of $P$ is
A
$4 x^2-9 y^2-9 z^2=0$
B
$9 x^2-4 y^2-4 z^2=0$
C
$4 x^2-4 y^2-9 z^2=0$
D
$9 x^2-9 y^2-4 z^2=0$
TS EAMCET Subjects
EXAM MAP