1
TG EAPCET 2024 (Online) 11th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
A unit vector $\hat{\mathbf{e}}=a \hat{\mathbf{i}}+b \hat{\mathbf{j}}+c \hat{\mathbf{k}}$ is coplanar with the vectors $\hat{\mathbf{i}}-3 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}$, and $3 \hat{\mathbf{i}}+\hat{\mathbf{j}}-5 \hat{\mathbf{k}}$. If $\hat{\mathbf{e}}$ is perpendicular to the vector $\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$, then $2 a^{2}+3 b^{2}+4 c^{2}=$
A
1
B
3
C
-1
D
$\sqrt{2}$
2
TG EAPCET 2024 (Online) 11th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
$\mathbf{a}=\hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}}, \hat{\mathbf{b}}=\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$ and $\hat{\mathbf{c}}=2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}$ are three vectors. If $\hat{\mathbf{d}}$ is a normal to the plane of $\hat{\mathbf{a}}$ and $\hat{\mathbf{b}}$ and d. $\hat{\mathbf{c}}=2$, then $|\hat{\mathbf{d}}|=$
A
$\sqrt{6}$
B
$2 \sqrt{3}$
C
$\sqrt{3}$
D
2
3
TG EAPCET 2024 (Online) 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $\mathbf{a}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+3 \hat{\mathbf{k}}, \mathbf{c}=-\hat{\mathbf{k}}$ are position vectors of two points and $\mathbf{b}=2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\lambda \hat{\mathbf{k}}, \mathbf{d}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}}$ are two vectors, then the lines $\mathbf{r}=\mathbf{a}+t \mathbf{b}, \mathbf{r}=\mathbf{c}+s \mathbf{d}$ are
A
skew lines, when $\lambda=\frac{19}{3}$
B
coplanar, $\forall \lambda \in R$
C
skew lines when $\lambda \neq \frac{19}{3}$
D
coplanar, when $\lambda \neq \frac{19}{3}$
4
TG EAPCET 2024 (Online) 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
$\mathbf{a}, \mathbf{b}, \mathbf{c}$ are three vectors each having $\sqrt{2}$ magnitude such that $(\mathbf{a}, \mathbf{b})=(\mathbf{b}, \mathbf{c})=(\mathbf{c}, \mathbf{a})=\frac{\pi}{3}$. If $\mathbf{x}=\mathbf{a} \times(\mathbf{b} \times \mathbf{c})$ and $\mathbf{y}=\mathbf{b} \times(\mathbf{c} \times \mathbf{a})$, then
A
$|\mathbf{x}|=|y|$
B
$|x|=\sqrt{2}|y|$
C
$|x|=2|y|$
D
$|x|+|y|=2$
TS EAMCET Subjects
EXAM MAP