1
TG EAPCET 2024 (Online) 11th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
A unit vector $\hat{\mathbf{e}}=a \hat{\mathbf{i}}+b \hat{\mathbf{j}}+c \hat{\mathbf{k}}$ is coplanar with the vectors $\hat{\mathbf{i}}-3 \hat{\mathbf{j}}+5 \hat{\mathbf{k}}$, and $3 \hat{\mathbf{i}}+\hat{\mathbf{j}}-5 \hat{\mathbf{k}}$. If $\hat{\mathbf{e}}$ is perpendicular to the vector $\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$, then $2 a^{2}+3 b^{2}+4 c^{2}=$
A
1
B
3
C
-1
D
$\sqrt{2}$
2
TG EAPCET 2024 (Online) 11th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
$\mathbf{a}=\hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}}, \hat{\mathbf{b}}=\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$ and $\hat{\mathbf{c}}=2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}$ are three vectors. If $\hat{\mathbf{d}}$ is a normal to the plane of $\hat{\mathbf{a}}$ and $\hat{\mathbf{b}}$ and d. $\hat{\mathbf{c}}=2$, then $|\hat{\mathbf{d}}|=$
A
$\sqrt{6}$
B
$2 \sqrt{3}$
C
$\sqrt{3}$
D
2
3
TG EAPCET 2024 (Online) 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
If $\mathbf{a}=\hat{\mathbf{i}}-\hat{\mathbf{j}}+3 \hat{\mathbf{k}}, \mathbf{c}=-\hat{\mathbf{k}}$ are position vectors of two points and $\mathbf{b}=2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+\lambda \hat{\mathbf{k}}, \mathbf{d}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-\hat{\mathbf{k}}$ are two vectors, then the lines $\mathbf{r}=\mathbf{a}+t \mathbf{b}, \mathbf{r}=\mathbf{c}+s \mathbf{d}$ are
A
skew lines, when $\lambda=\frac{19}{3}$
B
coplanar, $\forall \lambda \in R$
C
skew lines when $\lambda \neq \frac{19}{3}$
D
coplanar, when $\lambda \neq \frac{19}{3}$
4
TG EAPCET 2024 (Online) 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
$\mathbf{a}, \mathbf{b}, \mathbf{c}$ are three vectors each having $\sqrt{2}$ magnitude such that $(\mathbf{a}, \mathbf{b})=(\mathbf{b}, \mathbf{c})=(\mathbf{c}, \mathbf{a})=\frac{\pi}{3}$. If $\mathbf{x}=\mathbf{a} \times(\mathbf{b} \times \mathbf{c})$ and $\mathbf{y}=\mathbf{b} \times(\mathbf{c} \times \mathbf{a})$, then
A
$|\mathbf{x}|=|y|$
B
$|x|=\sqrt{2}|y|$
C
$|x|=2|y|$
D
$|x|+|y|=2$
TS EAMCET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12