1
TG EAPCET 2024 (Online) 9th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
$(3,0,2)$ and $(0,2, k)$ are the direction ratios of two lines and $\theta$ is the angle between them. If $|\cos \theta|=\frac{6}{13}$, then $k=$
A
$\pm 2$
B
$\pm 3$
C
$\pm 5$
D
$\pm 7$
2
TG EAPCET 2024 (Online) 9th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
$\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+\hat{\mathbf{k}}, 2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}$ and $\hat{\mathbf{i}}-\hat{\mathbf{j}}-2 \hat{\mathbf{k}}$ are the position vectors of the vertices $A, B$ and $C$ of a $\triangle A B C$ respectively. If $D$ and $E$ are the mid points of $B C$ and $C A$ respectively, then the unit vector along DE is
A
$\frac{1}{7}(3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+6 \hat{\mathbf{k}})$
B
$\frac{1}{\sqrt{14}}(-\hat{\mathbf{i}}-3 \hat{\mathbf{j}}+2 \hat{\mathbf{k}})$
C
$\frac{1}{\sqrt{3}}(\hat{\mathbf{i}}-\hat{\mathbf{j}}-\hat{\mathbf{k}})$
D
$\frac{1}{13}(12 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}})$
3
TG EAPCET 2024 (Online) 9th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
A vector of magnitude $\sqrt{2}$ units along the internal bisector of the angle between the vectors $2 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$ and $\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ is
A
$\hat{\mathbf{j}}+\hat{\mathbf{k}}$
B
$\hat{\mathbf{i}}-\hat{\mathbf{j}}$
C
$\hat{\mathbf{i}}-\hat{\mathbf{k}}$
D
$\hat{\mathbf{i}}+\hat{\mathbf{k}}$
4
TG EAPCET 2024 (Online) 9th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $\theta$ is the angle between the vectors $4 \hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ and $\hat{\mathbf{i}}+3 \hat{\mathbf{j}}-2 \hat{\mathbf{k}}$, then $\sin 2 \theta=$
A
$\sqrt{\frac{3}{95}}$
B
$-\sqrt{\frac{3}{95}}$
C
$-\sqrt{\frac{285}{49}}$
D
$\frac{\sqrt{258}}{49}$
TS EAMCET Subjects
EXAM MAP