1
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

Two numbers are selected at random, without replacement from the first 6 positive integers. Let $X$ denote the larger of the two numbers. Then $\mathrm{E}(\mathrm{X})=$

A
$\frac{14}{3}$
B
$\frac{3}{14}$
C
$\frac{14}{5}$
D
$\frac{15}{41}$
2
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

For $\mathrm{k}=1,2,3$ the box $\mathrm{B}_{\mathrm{k}}$ contains k red balls and $(k+1)$ white balls. Let $P\left(B_1\right)=\frac{1}{2}, P\left(B_2\right)=\frac{1}{3}$ and $\mathrm{P}\left(\mathrm{B}_3\right)=\frac{1}{6} . \mathrm{A}$ box is selected at random and a ball is drawn from it. If a red ball is drawn from it, then the probability that it comes from box $\mathrm{B}_2$ is

A
$\frac{35}{78}$
B
$\frac{14}{39}$
C
$\frac{10}{13}$
D
$\frac{12}{13}$
3
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

A random variable $X$ takes the values $0,1,2,3$, $\qquad$ with probability

$\mathrm{P}(\mathrm{X}=x)=\mathrm{k}(x+1)\left(\frac{1}{5}\right)^x$, where k is a constant.

Then $\mathrm{P}(\mathrm{X}=0)$ is

A
$\frac{16}{25}$
B
$\frac{7}{25}$
C
$\frac{19}{25}$
D
$\frac{18}{25}$
4
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $u=\frac{\tan ^{-1} x}{\tan ^{-1} x+1}$ and $v=\tan ^{-1}\left(\tan ^{-1} x\right)$ then $\frac{d u}{d v}=$

A
1
B
$\frac{1+\left(\tan ^{-1} x\right)^2}{\left(1+\tan ^{-1} x\right)^2}$
C
$\frac{\tan ^{-1} x}{\left(1+\tan ^{-1} x\right)^2}$
D
$\frac{1}{\left(1+\tan ^{-1} x\right)^2}$
MHT CET Papers
EXAM MAP