1
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{x}{y}=\frac{\mathrm{a}}{y}$ where a is constant, represents a family of circles then the radius of the circle is $\qquad$

A
$\mathrm{a}+2 \mathrm{c}$, where c is the constant of integration
B
$\sqrt{\mathrm{a}^2+2 \mathrm{c}}$, where c is the constant of integration
C
$\mathrm{a}^2+2 \mathrm{c}$, where c is the constant of integration
D
$\sqrt{a+c}$, where $c$ is the constant of integration
2
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $2 \mathrm{f}(x)+3 \mathrm{f}\left(\frac{1}{x}\right)=x^2+1, x \neq 0$ and $y=5 x^2 \mathrm{f}(x)$, then $y$ is strictly increasing in

A
$\left(0, \frac{1}{2}\right)$
B
$\left(\frac{-2}{5}, 0\right)$
C
$\left(\frac{1}{2}, \frac{\sqrt{5}}{2}\right)$
D
$\left(\frac{-1}{2}, 0\right)$
3
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The possible values of $\theta \in(0, \pi)$ such that $\sin \theta+\sin (4 \theta)+\sin (7 \theta)=0$ are

A
$\frac{\pi}{4}, \frac{5 \pi}{12}, \frac{\pi}{2}, \frac{2 \pi}{3}, \frac{3 \pi}{4}, \frac{8 \pi}{9}$
B
$\frac{2 \pi}{9}, \frac{\pi}{4}, \frac{\pi}{2}, \frac{2 \pi}{3}, \frac{3 \pi}{4}, \frac{35 \pi}{36}$
C
$\frac{2 \pi}{9}, \frac{\pi}{4}, \frac{\pi}{2}, \frac{2 \pi}{3}, \frac{3 \pi}{4}, \frac{8 \pi}{10}$
D
$\frac{2 \pi}{9}, \frac{\pi}{4}, \frac{4 \pi}{9}, \frac{\pi}{2}, \frac{3 \pi}{4}, \frac{8 \pi}{9}$
4
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

AOB is the positive quadrant of the ellipse $\frac{x^2}{25}+\frac{y^2}{9}=1$ in which $\mathrm{OA}=5, \mathrm{OB}=3$. The area between the arc AB and the chord AB of the ellipse in sq. units is

A
$\frac{3}{5}(\pi-2)$
B
$\frac{15}{2}(\pi-2)$
C
$\frac{3}{10}(\pi-2)$
D
$\frac{15}{4}(\pi-2)$
MHT CET Papers
EXAM MAP