1
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The solution of $\left(1+y^2\right)+\left(x-\mathrm{e}^{\tan ^{-1} y}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0$ is

A
$2 x \mathrm{e}^{\tan ^{-1} y}=\mathrm{e}^{2 \tan ^{-1} y}+\mathrm{k}$, where k is the constant of integration
B
$x \cdot \mathrm{e}^{\tan ^{-1} y}=\mathrm{e}^{\tan ^{-1} y}+\mathrm{k}$, where k is the constant of integration
C
$x \cdot \mathrm{e}^{2 \tan ^{-1} y}=\mathrm{e}^{\tan ^{-1} y}+\mathrm{k}$, where k is the constant of integration
D
$\quad x=2+\mathrm{k} \cdot \mathrm{e}^{-\tan ^{-1} y}$, where k is the constant of integration
2
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\left[\begin{array}{lll}1 & 3 & 3 \\ 1 & 4 & 4 \\ 1 & 3 & 4\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}12 \\ 15 \\ 13\end{array}\right]$, then the value of $x^2+y^2+z^2=$

A
6
B
12
C
3
D
14
3
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The rate of reduction of a persons assets is proportional to the square root of the existing assets. The assets reduced from 25 lakhs to 6.25 lakhs in 2 years. This rate of reduction of his assets will make him bankrupt in

A
3 years
B
5 years
C
4 years
D
6 years
4
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The distance of the point $(2,4,0)$ from the point of intersection of the lines $\frac{x+6}{3}=\frac{y}{2}=\frac{z+1}{1}$ and $\frac{x-7}{4}=\frac{y-9}{3}=\frac{z-4}{2}$ is

A
3 units
B
$3 \sqrt{3}$ units
C
2 units
D
$2 \sqrt{3}$ units
MHT CET Papers
EXAM MAP