1
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the plane passing through the point of intersection of the planes $2 x-y+z-3=0$ and $4 x-3 y+5 z+9=0$ and parallel to the line $\frac{x+1}{2}=\frac{y+3}{4}=\frac{z-3}{5}$ is $\alpha x+\beta y+\gamma z+d=0$ Then $\alpha+\beta+\gamma+d=$

A
48
B
-48
C
84
D
45
2
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the points $\mathrm{A}(1,1,2), \mathrm{B}(2,1, \mathrm{p}), \mathrm{C}(1,0,3)$ and $D(2,2,0)$ are coplanar then the value of $p$ is

A
0
B
-1
C
1
D
2
3
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int \frac{\mathrm{e}^{\tan ^{-1} 2 x}}{1+4 x^2}= $$

A
$4 \mathrm{e}^{\tan ^{-1} 2 x}+\mathrm{c}$, where c is the constant of integration
B
$\mathrm{e}^{\tan ^{-1} 2 x}+\mathrm{c}$, where c is the constant of integration
C
$\frac{\mathrm{e}^{\tan ^{-1} 2 x}}{2}+\mathrm{c}$, where c is the constant of integration
D
$2 \mathrm{e}^{\tan ^{-1} 2 x}+\mathrm{c}$, where c is the constant of integration
4
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the equation of the median through vertex $\mathrm{A}(3, \mathrm{k})$ of $\triangle \mathrm{ABC}$ with vertices $\mathrm{B}(2,1)$ and $\mathrm{C}(-4,5)$ is $x+4 y=\mathrm{p}$, then $\mathrm{k}=$ where p and k are constants

A
1
B
2
C
-2
D
3
MHT CET Papers
EXAM MAP