1
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

In a triangle ABC , the sides $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are such that they are the roots of the equation $x^3-11 x^2+38 x-40=0$ Then

$$ \frac{\cos A}{a}+\frac{\cos B}{b}+\frac{\cos C}{c}= $$

A
$\frac{3}{4}$
B
1
C
$\frac{9}{16}$
D
$\frac{1}{16}$
2
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

In a triangle ABC with usual notations if $\mathrm{a}=13$, $b=14, c=15$ Then $\sin A=$

A
$\frac{4}{5}$
B
$\frac{3}{5}$
C
$\frac{1}{2}$
D
$\frac{4}{7}$
3
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int_0^3 \frac{d x}{(x+2) \sqrt{x+1}}= $$

A
$\tan ^{-1}\left(\frac{1}{3}\right)$
B
$2 \tan ^{-1}\left(\frac{1}{3}\right)$
C
$3 \tan ^{-1}\left(\frac{1}{3}\right)$
D
$4 \tan ^{-1}\left(\frac{1}{3}\right)$
4
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $2 \tan ^{-1}(\cos x)=\tan ^{-1}(2 \operatorname{cosec} x)$, then the value of $x$ is

A
$-\frac{\pi}{4}$
B
0
C
$\frac{\pi}{8}$
D
$\frac{\pi}{4}$
MHT CET Papers
EXAM MAP