1
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int \frac{\mathrm{e}^{\tan ^{-1} 2 x}}{1+4 x^2}= $$

A
$4 \mathrm{e}^{\tan ^{-1} 2 x}+\mathrm{c}$, where c is the constant of integration
B
$\mathrm{e}^{\tan ^{-1} 2 x}+\mathrm{c}$, where c is the constant of integration
C
$\frac{\mathrm{e}^{\tan ^{-1} 2 x}}{2}+\mathrm{c}$, where c is the constant of integration
D
$2 \mathrm{e}^{\tan ^{-1} 2 x}+\mathrm{c}$, where c is the constant of integration
2
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the equation of the median through vertex $\mathrm{A}(3, \mathrm{k})$ of $\triangle \mathrm{ABC}$ with vertices $\mathrm{B}(2,1)$ and $\mathrm{C}(-4,5)$ is $x+4 y=\mathrm{p}$, then $\mathrm{k}=$ where p and k are constants

A
1
B
2
C
-2
D
3
3
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ are unit vectors and $\theta$ is the angle between them, then $\tan \frac{\theta}{2}=$

A
$|\overline{\mathrm{a}}-\overline{\mathrm{b}}|$
B
$|\vec{a}+\vec{b}|$
C
$\frac{|\vec{a}+\vec{b}|}{|\vec{a}-\vec{b}|}$
D
$\frac{|\bar{a}-\bar{b}|}{|\bar{a}+\bar{b}|}$
4
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

A manufacturer produces $x$ items per week at a total cost of ₹ $\left(x^2+78 x+2500\right)$. The price per unit is given by $8 x=600-\mathrm{p}$ where ' p ' is the price of each unit. Then the maximum profit obtained is

A
₹ 5069
B
₹ 15138
C
₹ 7569
D
₹ 2500
MHT CET Papers
EXAM MAP