1
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int_0^3 \frac{d x}{(x+2) \sqrt{x+1}}= $$

A
$\tan ^{-1}\left(\frac{1}{3}\right)$
B
$2 \tan ^{-1}\left(\frac{1}{3}\right)$
C
$3 \tan ^{-1}\left(\frac{1}{3}\right)$
D
$4 \tan ^{-1}\left(\frac{1}{3}\right)$
2
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $2 \tan ^{-1}(\cos x)=\tan ^{-1}(2 \operatorname{cosec} x)$, then the value of $x$ is

A
$-\frac{\pi}{4}$
B
0
C
$\frac{\pi}{8}$
D
$\frac{\pi}{4}$
3
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The particular solution of the differential equation $\cos \left(\frac{d y}{d x}\right)=7, y=1$ at $x=0$ is

A
$\quad \cos \left(\frac{7}{x}\right)=1$
B
$\quad \cos \left(\frac{y}{x-1}\right)=7$
C
$\quad \cos \left(\frac{y-1}{x}\right)=7$
D
None
4
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

In a triangle $A B C$, with usual notations, $3 \mathrm{~b}=\mathrm{a}+\mathrm{c}$, then $\cot \frac{\mathrm{A}}{2} \cdot \cot \frac{\mathrm{C}}{2}=$

A
1
B
2
C
$\frac{1}{2}$
D
4
MHT CET Papers
EXAM MAP